000138536 001__ 138536
000138536 005__ 20210129212255.0
000138536 0247_ $$2doi$$a10.1002/pssr.201307229
000138536 0247_ $$2ISSN$$a1862-6270
000138536 0247_ $$2ISSN$$a1862-6254
000138536 0247_ $$2WOS$$aWOS:000328484500014
000138536 0247_ $$2altmetric$$aaltmetric:2000330
000138536 037__ $$aFZJ-2013-04641
000138536 082__ $$a530
000138536 1001_ $$0P:(DE-Juel1)141766$$aRieger, Torsten$$b0$$eCorresponding author$$ufzj
000138536 245__ $$aSi substrate preparation for the VS and VLS growth of InAs nanowires
000138536 260__ $$aWeinheim$$bWiley-VCH$$c2013
000138536 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1382429138_8541
000138536 3367_ $$2DataCite$$aOutput Types/Journal article
000138536 3367_ $$00$$2EndNote$$aJournal Article
000138536 3367_ $$2BibTeX$$aARTICLE
000138536 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138536 3367_ $$2DRIVER$$aarticle
000138536 500__ $$3POF3_Assignment on 2016-02-29
000138536 520__ $$aThe growth of self-catalyzed InAs nanowires on Si(111) substrates via vapour–solid (VS) and vapour–liquid–solid (VLS) growth mechanisms is investigated using molecular beam epitaxy. For both mechanisms, the substrate preparation plays a crucial role. In this context, the required thin oxide layer for the VS growth of the nanowires is obtained by treating the HF-cleaned Si substrate with hydrogen peroxide. For the VLS growth, Ga is predeposited on the unprocessed Si substrate. The Ga forms droplets, which etch the native oxide and create the necessary pinholes.

(© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
000138536 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000138536 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000138536 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b1$$ufzj
000138536 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b2$$ufzj
000138536 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.201307229$$gVol. 7, no. 10, p. 840 - 844$$n10$$p840 - 844$$tPhysica status solidi / Rapid research letters$$v7$$x1862-6254$$y2013
000138536 8564_ $$uhttps://juser.fz-juelich.de/record/138536/files/FZJ-2013-04641.pdf$$yRestricted$$zPublished final document.
000138536 909CO $$ooai:juser.fz-juelich.de:138536$$pVDB
000138536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141766$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000138536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000138536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000138536 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000138536 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000138536 9141_ $$y2013
000138536 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000138536 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000138536 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138536 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138536 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138536 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138536 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138536 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138536 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000138536 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000138536 980__ $$ajournal
000138536 980__ $$aVDB
000138536 980__ $$aUNRESTRICTED
000138536 980__ $$aI:(DE-Juel1)PGI-9-20110106