000138710 001__ 138710
000138710 005__ 20210129212338.0
000138710 0247_ $$2doi$$a10.7567/JJAP.52.08JH10
000138710 0247_ $$2ISSN$$a1347-4065
000138710 0247_ $$2ISSN$$a0021-4922
000138710 0247_ $$2WOS$$aWOS:000323883100118
000138710 037__ $$aFZJ-2013-04797
000138710 082__ $$a530
000138710 1001_ $$0P:(DE-HGF)0$$aRiess, Sally$$b0$$eCorresponding author
000138710 245__ $$aHighly Transparent Conducting Polymer Top Contacts for Future III–Nitride Based Single Photon Emitters
000138710 260__ $$aTokyo$$bInst. of Pure and Applied Physics$$c2013
000138710 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1385038529_32295
000138710 3367_ $$2DataCite$$aOutput Types/Journal article
000138710 3367_ $$00$$2EndNote$$aJournal Article
000138710 3367_ $$2BibTeX$$aARTICLE
000138710 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138710 3367_ $$2DRIVER$$aarticle
000138710 500__ $$3POF3_Assignment on 2016-02-29
000138710 520__ $$aIn this paper we report on a simple conductive polymer based contacting technology for III–nitride based nanostructures with respect to the electrical operation within the telecommunication wavelength range. Singularly addressable InN/GaN pyramidal nanostructures were selectively grown by metalorganic vapour phase epitaxy (MOVPE) and subsequently integrated into a high-frequency device layout for future ultrafast electro-optical operation. The employment of the p-conducting polymer poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate) (PEDOT:PSS) is found to increase the light transmittance up to 89% at a wavelength of 1550 nm compared to 72% in the case of a conventional Ni/Au thin layer top contact. DC measurements using a quasi operation mode for 1000 h reveal no degradation and only a moderate increase of the dark currents. Thus, conducting polymer technology shows tremendous potential for future highly efficient and reliable room temperature operation of nitride based single photon emitters (SPEs).
000138710 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000138710 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000138710 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b1
000138710 7001_ $$0P:(DE-Juel1)144014$$aWinden, Andreas$$b2
000138710 7001_ $$0P:(DE-Juel1)130495$$aAdam, Roman$$b3
000138710 7001_ $$0P:(DE-HGF)0$$aMarso, Michel$$b4
000138710 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b5
000138710 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b6
000138710 773__ $$0PERI:(DE-600)2006801-3$$a10.7567/JJAP.52.08JH10$$gVol. 52, p. 08JH10 -$$p08JH10 -$$tJapanese journal of applied physics$$v52$$x1347-4065$$y2013
000138710 8564_ $$uhttps://juser.fz-juelich.de/record/138710/files/FZJ-2013-04797_PV.pdf$$yRestricted$$zPublished final document.
000138710 909CO $$ooai:juser.fz-juelich.de:138710$$pVDB
000138710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000138710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000138710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144014$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000138710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130495$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000138710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000138710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000138710 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000138710 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000138710 9141_ $$y2013
000138710 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000138710 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138710 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138710 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138710 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138710 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138710 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138710 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138710 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000138710 920__ $$lyes
000138710 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000138710 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000138710 980__ $$ajournal
000138710 980__ $$aVDB
000138710 980__ $$aUNRESTRICTED
000138710 980__ $$aI:(DE-Juel1)PGI-9-20110106
000138710 980__ $$aI:(DE-Juel1)VDB881
000138710 981__ $$aI:(DE-Juel1)VDB881