TY  - JOUR
AU  - Riess, Sally
AU  - Mikulics, Martin
AU  - Winden, Andreas
AU  - Adam, Roman
AU  - Marso, Michel
AU  - Grützmacher, Detlev
AU  - Hardtdegen, Hilde
TI  - Highly Transparent Conducting Polymer Top Contacts for Future III–Nitride Based Single Photon Emitters
JO  - Japanese journal of applied physics
VL  - 52
SN  - 1347-4065
CY  - Tokyo
PB  - Inst. of Pure and Applied Physics
M1  - FZJ-2013-04797
SP  - 08JH10 -
PY  - 2013
AB  - In this paper we report on a simple conductive polymer based contacting technology for III–nitride based nanostructures with respect to the electrical operation within the telecommunication wavelength range. Singularly addressable InN/GaN pyramidal nanostructures were selectively grown by metalorganic vapour phase epitaxy (MOVPE) and subsequently integrated into a high-frequency device layout for future ultrafast electro-optical operation. The employment of the p-conducting polymer poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate) (PEDOT:PSS) is found to increase the light transmittance up to 89% at a wavelength of 1550 nm compared to 72% in the case of a conventional Ni/Au thin layer top contact. DC measurements using a quasi operation mode for 1000 h reveal no degradation and only a moderate increase of the dark currents. Thus, conducting polymer technology shows tremendous potential for future highly efficient and reliable room temperature operation of nitride based single photon emitters (SPEs).
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000323883100118
DO  - DOI:10.7567/JJAP.52.08JH10
UR  - https://juser.fz-juelich.de/record/138710
ER  -