001     138722
005     20210129212341.0
024 7 _ |a 10.1134/S0021364011010103
|2 doi
024 7 _ |a 0021-3640
|2 ISSN
024 7 _ |a 1090-6487
|2 ISSN
024 7 _ |a WOS:000288711700003
|2 WOS
037 _ _ |a FZJ-2013-04809
082 _ _ |a 530
100 1 _ |a Zhukov, A. A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Low-temperature conductance of the weak junction in InAs nanowire in the field of AFM scanning gate
260 _ _ |a Heidelberg [u.a.]
|c 2011
|b Springer
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1392725388_30880
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a We have investigated the conductance of an InAs nanowire in the presence of an electrical potential created by an AFM scanning gate at liquid helium temperature. The influence of the direction of a local electrical field on the tunneling rate through a weak junction in the InAs wire is clearly observed. To explain this behavior, the redistribution of the electrons among conductive channels in the wire must be taken into account. We have confirmed that the pattern of Coulomb blockade diamonds gives the same result for the ratio of quantum dot sizes as that revealed by scanning gate imaging.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Volk, Ch.
|0 P:(DE-Juel1)128643
|b 1
|u fzj
700 1 _ |a Winden, A.
|0 P:(DE-Juel1)144014
|b 2
|u fzj
700 1 _ |a Hardtdegen, H.
|0 P:(DE-Juel1)125593
|b 3
|u fzj
700 1 _ |a Schäpers, Th.
|0 P:(DE-Juel1)128634
|b 4
|u fzj
773 _ _ |a 10.1134/S0021364011010103
|g Vol. 93, no. 1, p. 10 - 14
|p 10-14
|n 1
|0 PERI:(DE-600)1472906-4
|t JETP letters
|v 93
|y 2011
|x 1090-6487
856 4 _ |z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/138722/files/FZJ-2013-04809_PV.pdf
|z Published final document.
|y Restricted
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:138722
909 C O |o oai:juser.fz-juelich.de:138722
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128643
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144014
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)125593
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128634
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a No Peer review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21