000139325 001__ 139325
000139325 005__ 20210129212543.0
000139325 020__ $$a978-3-89336-870-9
000139325 037__ $$aFZJ-2013-05322
000139325 041__ $$aEnglish
000139325 082__ $$a500
000139325 1001_ $$0P:(DE-Juel1)144014$$aWinden, Andreas$$b0$$eCorresponding author$$ufzj
000139325 1112_ $$a15th European Workshop on Metal Organic Vapour Phase Epitaxy$$cAachen$$d2013-06-02 - 2013-06-05$$gEWMOVPE XV$$wGermany
000139325 245__ $$aMOVPE of site-controlled pyramidal (Ga,In)N hetero-nanostructures for future single photons emitters
000139325 260__ $$aJülich$$bForschungszentrum Jülich$$c2013
000139325 3367_ $$0PUB:(DE-HGF)26$$2PUB:(DE-HGF)$$aProceedings$$bproc$$mproc$$s1385384509_17399
000139325 3367_ $$2BibTeX$$aPROCEEDINGS
000139325 3367_ $$2ORCID$$aBOOK
000139325 3367_ $$2DataCite$$aOutput Types/Book
000139325 3367_ $$2DRIVER$$aconferenceObject
000139325 3367_ $$03$$2EndNote$$aConference Proceedings
000139325 4900_ $$v27
000139325 520__ $$aIn this work, we report on how to obtain site- and size-controlled InN quantum dots (QDs) by selective area metalorganic vapour phase epitaxy (SA-MOVPE) and how to embed them into a vertical p-n junction for future single photon emitters. To this purpose we investigated the growth of InN nanostructures in differently sized mask apertures as a function of the growth time and established a low temperature growth process to cover
these structures with a p-doped GaN cap layer. We observed that single sub-25 nm quantum dots can be achieved when the aperture diameter is reduced to 20 nm and the growth time accounts for less than a minute. Micro-photoluminescence (μ-PL) measurements on single GaN capped InN nano-pyramids exhibit a broad and intense DAP transition band in the range of 2.85 eV indicating successful p-doping.
000139325 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000139325 588__ $$aDataset connected to GVK,
000139325 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b1
000139325 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b2
000139325 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b3
000139325 909CO $$ooai:juser.fz-juelich.de:139325$$pVDB
000139325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144014$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000139325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000139325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000139325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000139325 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000139325 9141_ $$y2013
000139325 920__ $$lyes
000139325 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000139325 980__ $$aproc
000139325 980__ $$aVDB
000139325 980__ $$aUNRESTRICTED
000139325 980__ $$aI:(DE-Juel1)PGI-9-20110106