001     139493
005     20210129212613.0
024 7 _ |a 10.3389/fnins.2013.00267
|2 doi
024 7 _ |a 2128/5575
|2 Handle
024 7 _ |a WOS:000346567300262
|2 WOS
024 7 _ |a altmetric:2005152
|2 altmetric
024 7 _ |a pmid:24431986
|2 pmid
037 _ _ |a FZJ-2013-05477
082 _ _ |a 610
100 1 _ |a Gramfort, A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a MEG and EEG data analysis with MNE-Python.
260 _ _ |a Lausanne
|c 2013
|b Frontiers Research Foundation
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 139493
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne.
536 _ _ |a 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)
|0 G:(DE-HGF)POF2-333
|c POF2-333
|f POF II
|x 0
700 1 _ |a Luessi, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Larson, E.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Engemann, D.
|0 P:(DE-Juel1)144558
|b 3
700 1 _ |a Strohmeier, D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brodbeck, C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Goj, R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jas, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Brooks, T.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hämäläinen, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Parkkonen, L.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.3389/fnins.2013.00267
|0 PERI:(DE-600)2411902-7
|n 267
|p 1-13
|t Frontiers in neuroscience
|v 7
|x 1662-4548
856 4 _ |y Publishers version according to licensing conditions.
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/139493/files/FZJ-2013-05477.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/139493/files/FZJ-2013-05477.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139493/files/FZJ-2013-05477.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139493/files/FZJ-2013-05477.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:139493
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:139493
909 C O |o oai:juser.fz-juelich.de:139493
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144558
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-579H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-333
|2 G:(DE-HGF)POF2-300
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a VDB
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21