Journal Article FZJ-2013-05477

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
MEG and EEG data analysis with MNE-Python.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2013
Frontiers Research Foundation Lausanne

Frontiers in neuroscience 7(267), 1-13 () [10.3389/fnins.2013.00267]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne.

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
Research Program(s):
  1. 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333) (POF2-333)

Appears in the scientific report 2013
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; DOAJ ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2013-11-19, last modified 2021-01-29


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)