000014009 001__ 14009
000014009 005__ 20180208230207.0
000014009 0247_ $$2DOI$$a10.1016/j.mee.2009.11.034
000014009 0247_ $$2WOS$$aWOS:000276300700216
000014009 037__ $$aPreJuSER-14009
000014009 041__ $$aeng
000014009 082__ $$a620
000014009 084__ $$2WoS$$aEngineering, Electrical & Electronic
000014009 084__ $$2WoS$$aNanoscience & Nanotechnology
000014009 084__ $$2WoS$$aOptics
000014009 084__ $$2WoS$$aPhysics, Applied
000014009 1001_ $$0P:(DE-Juel1)VDB75720$$aRosezin, R.$$b0$$uFZJ
000014009 245__ $$aObservation of unipolar resistance switching in silver doped methyl-silsesquioxane
000014009 260__ $$a[S.l.] @$$bElsevier$$c2010
000014009 300__ $$a
000014009 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014009 3367_ $$2DataCite$$aOutput Types/Journal article
000014009 3367_ $$00$$2EndNote$$aJournal Article
000014009 3367_ $$2BibTeX$$aARTICLE
000014009 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014009 3367_ $$2DRIVER$$aarticle
000014009 440_0 $$04347$$aMicroelectronic Engineering$$v87$$x0167-9317$$y5
000014009 500__ $$aRecord converted from VDB: 12.11.2012
000014009 520__ $$aResistive switching materials attract high scientific interest as a candidate for potential next-generation non-volatile memories. Nano crossbar structures and single junctions down to 60 x 60 nm(2) with integrated silver doped methyl-silsesquioxane (MSQ) as switching material are fabricated using UV nano imprint. Here silver doped MSQ with platinum top and bottom electrodes replaces the formerly used material stack with undoped MSQ between platinum bottom and silver top electrodes. The new material system yields advantages regarding the process temperature budget and therefore multiple crossbar arrays and electrode layers are possible in order to multiply the integration density by the number of crossbar layers. (C) 2009 Elsevier B.V. All rights reserved.
000014009 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000014009 588__ $$aDataset connected to Web of Science
000014009 650_7 $$2WoSType$$aJ
000014009 65320 $$2Author$$aResistive switching
000014009 65320 $$2Author$$aMethyl-silsesquioxane
000014009 65320 $$2Author$$aMSQ
000014009 65320 $$2Author$$aNano imprint lithography
000014009 65320 $$2Author$$aNIL
000014009 65320 $$2Author$$aMemory devices
000014009 7001_ $$0P:(DE-Juel1)VDB55622$$aMeier, M.$$b1$$uFZJ
000014009 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, S.$$b2$$uFZJ
000014009 7001_ $$0P:(DE-Juel1)VDB15125$$aKügeler, C.$$b3$$uFZJ
000014009 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b4$$uFZJ
000014009 773__ $$0PERI:(DE-600)1497065-x$$a10.1016/j.mee.2009.11.034$$gVol. 87$$q87$$tMicroelectronic engineering$$v87$$x0167-9317$$y2010
000014009 8567_ $$uhttp://dx.doi.org/10.1016/j.mee.2009.11.034
000014009 909CO $$ooai:juser.fz-juelich.de:14009$$pVDB
000014009 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000014009 9141_ $$y2010
000014009 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000014009 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000014009 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000014009 9201_ $$0I:(DE-Juel1)VDB554$$gIBN$$kIBN-PT$$lProzesstechnologie$$x2
000014009 970__ $$aVDB:(DE-Juel1)125788
000014009 980__ $$aVDB
000014009 980__ $$aConvertedRecord
000014009 980__ $$ajournal
000014009 980__ $$aI:(DE-Juel1)PGI-7-20110106
000014009 980__ $$aI:(DE-82)080009_20140620
000014009 980__ $$aI:(DE-Juel1)VDB554
000014009 980__ $$aUNRESTRICTED
000014009 981__ $$aI:(DE-Juel1)PGI-7-20110106
000014009 981__ $$aI:(DE-Juel1)VDB554
000014009 981__ $$aI:(DE-Juel1)VDB881