001     14009
005     20180208230207.0
024 7 _ |2 DOI
|a 10.1016/j.mee.2009.11.034
024 7 _ |2 WOS
|a WOS:000276300700216
037 _ _ |a PreJuSER-14009
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Optics
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Rosezin, R.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB75720
245 _ _ |a Observation of unipolar resistance switching in silver doped methyl-silsesquioxane
260 _ _ |a [S.l.] @
|b Elsevier
|c 2010
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Microelectronic Engineering
|x 0167-9317
|0 4347
|y 5
|v 87
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Resistive switching materials attract high scientific interest as a candidate for potential next-generation non-volatile memories. Nano crossbar structures and single junctions down to 60 x 60 nm(2) with integrated silver doped methyl-silsesquioxane (MSQ) as switching material are fabricated using UV nano imprint. Here silver doped MSQ with platinum top and bottom electrodes replaces the formerly used material stack with undoped MSQ between platinum bottom and silver top electrodes. The new material system yields advantages regarding the process temperature budget and therefore multiple crossbar arrays and electrode layers are possible in order to multiply the integration density by the number of crossbar layers. (C) 2009 Elsevier B.V. All rights reserved.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Resistive switching
653 2 0 |2 Author
|a Methyl-silsesquioxane
653 2 0 |2 Author
|a MSQ
653 2 0 |2 Author
|a Nano imprint lithography
653 2 0 |2 Author
|a NIL
653 2 0 |2 Author
|a Memory devices
700 1 _ |a Meier, M.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB55622
700 1 _ |a Trellenkamp, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)128856
700 1 _ |a Kügeler, C.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB15125
700 1 _ |a Waser, R.
|b 4
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1016/j.mee.2009.11.034
|g Vol. 87
|q 87
|0 PERI:(DE-600)1497065-x
|t Microelectronic engineering
|v 87
|y 2010
|x 0167-9317
856 7 _ |u http://dx.doi.org/10.1016/j.mee.2009.11.034
909 C O |o oai:juser.fz-juelich.de:14009
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
920 1 _ |0 I:(DE-Juel1)VDB554
|k IBN-PT
|l Prozesstechnologie
|g IBN
|x 2
970 _ _ |a VDB:(DE-Juel1)125788
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)VDB554
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB554
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21