Journal Article FZJ-2014-00155

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effect of Organic Amendments on the Evolution of Soil Organic Matter in Soils Stressed by Intensive Agricultural Practices

 ;  ;  ;  ;

2013
Bentham Science Publ. Hilversum [u.a.]

Current organic chemistry 17(24), 2998-3005 () special issue: "Recent Advances in Environmental Organic and Bio-Organic Chemistry"

This record in other databases:

Abstract: Losses of soil organic carbon often occur because of intensive agricultural practices that lead to removal of organic carbon following harvest production and to insufficient inputs. Organic amendments can be very appropriate for enhancing organic carbon content in very stressed agricultural soils. By enhancing soil organic matter, they generally play an important role in environmental matrices due to their capacity in retaining water and in enhancing nutrient availability to plants. Therefore, understanding the mechanisms by which organic amendments interact with other chemicals in the environment is of paramount importance. The attention was focused on farms near Sele river (Campania region, Italy), an area characterized by intensive agriculture. Two farms, with contrasting geopedologic properties (clay vs. sandy), were selected in order to study the effect of different doses of organic amendments containing compost from municipal solid wastes and wood-wastes (scraps of poplars pruning) at different ratios. The organic fractions were extracted from soil, after one and twelve months from amendment, and were analysed in order to establish their elemental composition and properties by FTIR, CPMAS 13C NMR spectroscopy and FFC-NMR relaxometry. Results showed an important role of soil geopedologic characteristics and experimental time in the evolution of humic acids. In less aerobic conditions as occurs in clay soils, organic matter was more stable, rich in carbonyl groups belonging to aldehydes and ketones, whereas under more aerobic conditions, occurring in sandy soils, organic matter had undergone a faster degradation, due to oxidative conditions and more intensive microbial activity.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 245 - Chemicals in the Environment (POF2-245) (POF2-245)

Appears in the scientific report 2013
Database coverage:
Medline ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database

 Record created 2014-01-08, last modified 2021-01-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)