000150547 001__ 150547
000150547 005__ 20210129213217.0
000150547 020__ $$a978-3-89336-870-9
000150547 037__ $$aFZJ-2014-00601
000150547 1001_ $$0P:(DE-Juel1)128650$$avon der Ahe, Martina$$b0$$eCorresponding author
000150547 1112_ $$a15th European Workshop on Metalorganic Vapour Phase Epitaxie$$cAachen$$d2013-06-02 - 2013-06-05$$gEWMOVPE XV$$wGermany
000150547 245__ $$aMOCVD and characterization of GaAs layers on Al pseudo-substrates for future ultrafast optoelectronics
000150547 260__ $$c2013
000150547 300__ $$a95-98
000150547 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1390464619_10361
000150547 3367_ $$033$$2EndNote$$aConference Paper
000150547 3367_ $$2ORCID$$aCONFERENCE_PAPER
000150547 3367_ $$2DataCite$$aOutput Types/Conference Paper
000150547 3367_ $$2DRIVER$$aconferenceObject
000150547 3367_ $$2BibTeX$$aINPROCEEDINGS
000150547 500__ $$3POF3_Assignment on 2016-02-29
000150547 520__ $$aGaAs is broadly used in modern electronics. The application of GaAs-based devices in high power electronics,
however, is complicated due to the substantial excess heat generated during device operation. One possibility to
dissipate the excess heat is to employ substrates with high thermal conductivity. In this contribution we present
the growth of GaAs layers by metalorganic vapor phase epitaxy (MOVPE) on aluminum (111) pseudosubstrates
designed for an improved heat management in GaAs electronic circuits. They were prepared by Al
evaporation on (100) GaAs substrates and subsequent heat treatment. The GaAs layers are polycrystalline. The
roughnesses of the layers were in the range of 13 to 62 nm and the thickness in the range of 600 – 2300 nm.
The layers exhibit extremely low carrier lifetime due to the growth-induced defects and are suitable for the
fabrication of ultrafast metal-semiconductor-metal (MSM) photodetectors (PDs).
000150547 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000150547 7001_ $$0P:(DE-Juel1)144014$$aWinden, Andreas$$b1$$ufzj
000150547 7001_ $$0P:(DE-HGF)0$$aSofer, Zdenek$$b2
000150547 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b3$$ufzj
000150547 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b4$$ufzj
000150547 7001_ $$0P:(DE-HGF)0$$aMarso, Michel$$b5
000150547 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b6$$ufzj
000150547 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b7$$ufzj
000150547 909CO $$ooai:juser.fz-juelich.de:150547$$pVDB
000150547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128650$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144014$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000150547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000150547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000150547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000150547 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000150547 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000150547 9141_ $$y2013
000150547 920__ $$lyes
000150547 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000150547 980__ $$acontrib
000150547 980__ $$aVDB
000150547 980__ $$aUNRESTRICTED
000150547 980__ $$aI:(DE-Juel1)PGI-9-20110106