TY - JOUR
AU - Durgun Özben, E.
AU - Lopes, J.M.J.
AU - Nichau, A.
AU - Lupták, R.
AU - Lenk, S.
AU - Besmehn, A.
AU - Bourdelle, K.K.
AU - Zhao, Q.T.
AU - Schubert, J.
AU - Mantl, S.
TI - Rare-Earth Scandate/TiN Gate Stacks in SOI MOSFETs Fabricated with a Full Replacement Gate Process
JO - IEEE Transactions on Electron Devices
VL - 58
SN - 0018-9383
M1 - PreJuSER-15163
SP - 617 - 622
PY - 2011
N1 - This work was supported in part by the Project KZWEI, which is funded in line with the technology funding for European Regional Development Fund, by the Free State of Saxony, by the German Federal Ministry of Education and Research via the MEDEA+ Project DECISIF under Grant 2T104, and by the Nanosil Network from the European Community (Seventh Framework Program) under Grant 216171. The review of this paper was arranged by Editor V. R. Rao.
AB - Terbium scandate (TbScO3) and lanthanum scandate (LaScO3) have been investigated as gate dielectrics for metal-oxide-semiconductor field-effect transistors on both silicon-on-insulator (SOI) and strained SOI (sSOI) substrates. X-ray photoelectron spectroscopy analysis revealed the presence of a silicate at the interface for TbScO3 on Si, whereas a silicate/SiO2-like interface was found for the LaScO3 on Si. A full replacement gate process was developed to fabricate high-kappa/metal gate fully depleted transistors on SOI and sSOI. LaScO3 transistors with a gate length of 2 mu m show excellent characteristics with steep subthreshold slopes of 72 mV/dec, high Ion/Ioff ratios, and electron mobility of 180 cm(2)/V . s for SOI and 375 cm(2)/V . s for sSOI at low field, which is superior to corresponding TbScO3 devices. All sSOI transistors showed 2 times higher electron mobility than SOI reference devices.
KW - J (WoSType)
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000287665700005
DO - DOI:10.1109/TED.2010.2096509
UR - https://juser.fz-juelich.de/record/15163
ER -