Journal Article PreJuSER-15163

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Rare-Earth Scandate/TiN Gate Stacks in SOI MOSFETs Fabricated with a Full Replacement Gate Process

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2011

IEEE Transactions on Electron Devices 58, 617 - 622 () [10.1109/TED.2010.2096509]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Terbium scandate (TbScO3) and lanthanum scandate (LaScO3) have been investigated as gate dielectrics for metal-oxide-semiconductor field-effect transistors on both silicon-on-insulator (SOI) and strained SOI (sSOI) substrates. X-ray photoelectron spectroscopy analysis revealed the presence of a silicate at the interface for TbScO3 on Si, whereas a silicate/SiO2-like interface was found for the LaScO3 on Si. A full replacement gate process was developed to fabricate high-kappa/metal gate fully depleted transistors on SOI and sSOI. LaScO3 transistors with a gate length of 2 mu m show excellent characteristics with steep subthreshold slopes of 72 mV/dec, high Ion/Ioff ratios, and electron mobility of 180 cm(2)/V . s for SOI and 375 cm(2)/V . s for sSOI at low field, which is superior to corresponding TbScO3 devices. All sSOI transistors showed 2 times higher electron mobility than SOI reference devices.

Keyword(s): J ; High-kappa (auto) ; LaScO3 (auto) ; mobility (auto) ; metal-oxide-semiconductor field-effect transistors (MOSFETs) (auto) ; replacement gate (auto) ; silicon on insulator (SOI) (auto) ; strained Si (auto) ; TbScO3 (auto)


Note: This work was supported in part by the Project KZWEI, which is funded in line with the technology funding for European Regional Development Fund, by the Free State of Saxony, by the German Federal Ministry of Education and Research via the MEDEA+ Project DECISIF under Grant 2T104, and by the Nanosil Network from the European Community (Seventh Framework Program) under Grant 216171. The review of this paper was arranged by Editor V. R. Rao.

Contributing Institute(s):
  1. Halbleiter-Nanoelektronik (PGI-9)
  2. Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology (JARA-FIT)
  3. Zentralabteilung für Chemische Analysen (ZCH)
Research Program(s):
  1. Grundlagen für zukünftige Informationstechnologien (P42)
  2. NANOSIL - Silicon-based nanostructures and nanodevices for long term nanoelectronics applications (216171) (216171)

Appears in the scientific report 2011
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > ZEA > ZEA-3
Institute Collections > PGI > PGI-9
Workflow collections > Public records
Publications database

 Record created 2012-11-13, last modified 2018-02-08



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)