001 | 151760 | ||
005 | 20240610120954.0 | ||
024 | 7 | _ | |a 10.1039/C3NR05780A |2 doi |
024 | 7 | _ | |a 2128/5949 |2 Handle |
024 | 7 | _ | |a WOS:000332604200016 |2 WOS |
037 | _ | _ | |a FZJ-2014-01649 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Schütte, K. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis |
260 | _ | _ | |a Cambridge |c 2014 |b RSC Publ. |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 151760 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
520 | _ | _ | |a Microwave-induced decomposition of the transition metal amidinates {[Me(C(NiPr)2)]Cu}2 (1) and [Me(C(NiPr)2)]2Zn (2) in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) or in propylene carbonate (PC) gives copper and zinc nanoparticles which are stable in the absence of capping ligands (surfactants) for more than six weeks. Co-decomposition of 1 and 2 yields the intermetallic nano-brass phases β-CuZn and γ-Cu3Zn depending on the chosen molar ratios of the precursors. Nanoparticles were characterized by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), dynamic light scattering and powder X-ray diffractometry. Microstructure characterizations were complemented by STEM with spatially resolved energy-dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. Synthesis in ILs yields significantly smaller nanoparticles than in PC. β-CuZn alloy nanoparticles are precursors to catalysts for methanol synthesis from the synthesis gas H2/CO/CO2 with a productivity of 10.7 mol(MeOH) (kg(Cu) h)−1. |
536 | _ | _ | |a 424 - Exploratory materials and phenomena (POF2-424) |0 G:(DE-HGF)POF2-424 |c POF2-424 |f POF II |x 0 |
700 | 1 | _ | |a Meyer, H. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Gemel, Chr. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Barthel, Juri |0 P:(DE-Juel1)130525 |b 3 |u fzj |
700 | 1 | _ | |a Fischer, R. A. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Janiak, Chr. |0 P:(DE-HGF)0 |b 5 |
773 | _ | _ | |a 10.1039/C3NR05780A |0 PERI:(DE-600)2515664-0 |n 6 |p 3116 - 3126 |t Nanoscale |v 6 |x 2040-3364 |
856 | 4 | _ | |y Publishers version according to licensing conditions. |z Published final document. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/151760/files/FZJ-2014-01649.pdf |y OpenAccess |z Published final document. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/151760/files/FZJ-2014-01649.jpg?subformat=icon-144 |x icon-144 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/151760/files/FZJ-2014-01649.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/151760/files/FZJ-2014-01649.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:151760 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130525 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-424 |2 G:(DE-HGF)POF2-400 |v Exploratory materials and phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0 |0 LIC:(DE-HGF)CCBYNC3 |2 HGFVOC |
915 | _ | _ | |a Peer review unknown |0 StatID:(DE-HGF)0040 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a JUWEL |
980 | _ | _ | |a FullTexts |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
980 | _ | _ | |a VDB |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|