001     151761
005     20210129213544.0
020 _ _ |a 978-3-642-42013-9
024 7 _ |a 10.1007/978-3-642-42014-6_7
|2 doi
037 _ _ |a FZJ-2014-01650
100 1 _ |a Elmenhorst, David
|0 P:(DE-Juel1)131679
|b 0
|u fzj
|e Corresponding author
245 _ _ |a Imaging of Adenosine Receptors
250 _ _ |a Chapter 7
260 _ _ |a Berlin, Heidelberg
|c 2014
|b Springer Berlin Heidelberg
295 1 0 |a PET and SPECT of Neurobiological Systems
300 _ _ |a 181-198
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1394461532_23332
|2 PUB:(DE-HGF)
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Adenosine is a fundamental molecule of life. It is a part of the DNA and the main degradation product of the central currency of energy metabolism in humans and animals – adenosine triphosphate (ATP). Under pathological conditions like hypoxia, the adenosine concentration can rise severalfold – up to micromolar concentrations. The net effect of adenosine on excitable tissue is inhibitory affecting the release of classical neurotransmitters like glutamate, GABA (gamma-aminobutyric acid), and dopamine. The widely used neurostimulant caffeine exerts its effects as an antagonist at adenosine receptors. Four different types of adenosine receptors have been described in mammals: A1, A2A, A2B, and A3 which are all G-protein-coupled receptors. Over the last 25 years, adenosine receptor ligands, agonists as well as antagonists, have emerged as a class of useful therapeutics. For the A1 and A2A subtypes several antagonist radioligands have been used successfully for PET imaging in humans and animals especially for the brain.
536 _ _ |a 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)
|0 G:(DE-HGF)POF2-333
|c POF2-333
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef Book
700 1 _ |a Bier, Dirk
|0 P:(DE-Juel1)131810
|b 1
|u fzj
700 1 _ |a Holschbach, Marcus
|0 P:(DE-Juel1)131824
|b 2
|u fzj
700 1 _ |a Bauer, Andreas
|0 P:(DE-Juel1)131672
|b 3
|u fzj
773 _ _ |a 10.1007/978-3-642-42014-6_7
856 4 _ |u http://link.springer.com/chapter/10.1007%2F978-3-642-42014-6_7
856 4 _ |u https://juser.fz-juelich.de/record/151761/files/FZJ-2014-01650.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:151761
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131679
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131810
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131824
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131672
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-579H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-333
|2 G:(DE-HGF)POF2-300
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 1
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
981 _ _ |a I:(DE-Juel1)INM-5-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21