TY - JOUR
AU - Kroll, Tina
AU - Elmenhorst, David
AU - Weißhaupt, Angela
AU - Beer, Simone
AU - Bauer, Andreas
TI - Reproducibility of Non-Invasive A1 Adenosine Receptor Quantification in the Rat Brain Using [18F]CPFPX and Positron Emission Tomography
JO - Molecular imaging & biology
VL - 16
IS - 5
SN - 1536-1632
CY - Amsterdam [u.a.]
PB - Elsevier Science
M1 - FZJ-2014-01663
SP - 699-709
PY - 2014
AB - PurposeThe A1AR antagonist 8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ([18F]CPFPX) has recently been shown to be a suitable radiotracer for quantitative in vivo imaging of the A1 adenosine receptor (A1AR) in rats. The present study evaluates the reproducibility of non-invasive longitudinal A1AR studies with [18F]CPFPX and a dedicated small animal positron emission tomography (PET) scanner.ProceduresTwelve male Sprague Dawley rats underwent four repeated dynamic PET scans with a bolus injection of [18F]CPFPX. A1AR availability was determined by different non-invasive approaches including simplified and multilinear reference tissue (olfactory bulb)-based models and graphical methods. The outcome parameter binding potential (BP) was evaluated in terms of variability and reproducibility.ResultsRepeated estimations of [18F]CPFPX BP ND gave reliable results with acceptable variability (mean 12 %) and reproducibility (intraclass correlation coefficients raging from 0.57 to 0.68) in cortical and subcortical regions of the rat brain. With regard to kinetic models, test-retest stability of the simplified reference-tissue model (SRTM) was superior to multilinear and graphical approaches.ConclusionsNon-invasive quantification of A1AR density in the rat brain is reproducible and reliable with [18F]CPFPX PET and allows longitudinal designs of in vivo imaging studies in rodents.
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000342135800014
DO - DOI:10.1007/s11307-014-0729-0
UR - https://juser.fz-juelich.de/record/151781
ER -