000153296 001__ 153296
000153296 005__ 20210129213720.0
000153296 0247_ $$2doi$$a10.1016/j.finel.2014.03.001
000153296 0247_ $$2ISSN$$a1872-6925
000153296 0247_ $$2ISSN$$a0168-874X
000153296 0247_ $$2ISSN$$a0168-874x
000153296 0247_ $$2WOS$$aWOS:000336457200001
000153296 037__ $$aFZJ-2014-02939
000153296 082__ $$a510
000153296 1001_ $$0P:(DE-Juel1)144194$$aPüttmann, Andreas$$b0$$eCorresponding Author$$ufzj
000153296 245__ $$aStabilized space–time finite elements for high-definition simulation of packed bed chromatography
000153296 260__ $$aAmsterdam$$bNorth-Holland$$c2014
000153296 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1398776756_20153
000153296 3367_ $$2DataCite$$aOutput Types/Journal article
000153296 3367_ $$00$$2EndNote$$aJournal Article
000153296 3367_ $$2BibTeX$$aARTICLE
000153296 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153296 3367_ $$2DRIVER$$aarticle
000153296 520__ $$aWe present a finite element scheme for spatially resolved simulations of fluid flow and mass transfer in chromatography columns. Packed bed chromatography is an important unit operation for the purification of product molecules in biopharmaceutical industry. The problem combines different challenges arising from advection dominance, stiffness due to the presence of reaction terms, and from the size of the resulting linear equation systems. We show that our stabilized space–time finite element method can handle these difficulties adequately and solve test problems efficiently.
000153296 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000153296 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000153296 7001_ $$0P:(DE-Juel1)144331$$aNicolai, Mike$$b1$$ufzj
000153296 7001_ $$0P:(DE-HGF)0$$aBehr, Marek$$b2
000153296 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b3$$ufzj
000153296 773__ $$0PERI:(DE-600)2019309-9$$a10.1016/j.finel.2014.03.001$$gVol. 86, p. 1 - 11$$p1 - 11$$tFinite elements in analysis and design$$v86$$x0168-874X$$y2014
000153296 8564_ $$uhttps://juser.fz-juelich.de/record/153296/files/FZJ-2014-02939.pdf$$yRestricted$$zPublished final document.
000153296 909CO $$ooai:juser.fz-juelich.de:153296$$pVDB
000153296 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144194$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153296 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144331$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000153296 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000153296 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000153296 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000153296 9141_ $$y2014
000153296 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000153296 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000153296 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000153296 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153296 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153296 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000153296 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153296 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153296 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000153296 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000153296 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000153296 980__ $$ajournal
000153296 980__ $$aVDB
000153296 980__ $$aI:(DE-Juel1)IBG-1-20101118
000153296 980__ $$aI:(DE-Juel1)JSC-20090406
000153296 980__ $$aUNRESTRICTED
000153296 981__ $$aI:(DE-Juel1)JSC-20090406