% IMPORTANT: The following is UTF-8 encoded. This means that in the presence % of non-ASCII characters, it will not work with BibTeX 0.99 or older. % Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or % “biber”. @ARTICLE{Rocco:153366, author = {Rocco, Mattia and Molteni, Matteo and Ponassi, Marco and Giachi, Guido and Frediani, Marco and Koutsioumpas, Alexandros and Profumo, Aldo and Trevarin, Didier and Cardinali, Barbara and Vachette, Patrice and Ferri, Fabio and Pérez, Javier}, title = {{A} {C}omprehensive {M}echanism of {F}ibrin {N}etwork {F}ormation {I}nvolving {E}arly {B}ranching and {D}elayed {S}ingle- to {D}ouble-{S}trand {T}ransition from {C}oupled {T}ime-{R}esolved {X}-ray/{L}ight-{S}cattering {D}etection}, journal = {Journal of the American Chemical Society}, volume = {136}, number = {14}, issn = {1520-5126}, address = {Washington, DC}, publisher = {American Chemical Society}, reportid = {FZJ-2014-02997}, pages = {5376 - 5384}, year = {2014}, abstract = {The formation of a fibrin network following fibrinogen enzymatic activation is the central event in blood coagulation and has important biomedical and biotechnological implications. A non-covalent polymerization reaction between macromolecular monomers, it consists basically of two complementary processes: elongation/branching generates an interconnected 3D scaffold of relatively thin fibrils, and cooperative lateral aggregation thickens them more than 10-fold. We have studied the early stages up to the gel point by fast fibrinogen:enzyme mixing experiments using simultaneous small-angle X-ray scattering and wide-angle, multi-angle light scattering detection. The coupled evolutions of the average molecular weight, size, and cross section of the solutes during the fibrils growth phase were thus recovered. They reveal that extended structures, thinner than those predicted by the classic half-staggered, double-stranded mechanism, must quickly form. Following extensive modeling, an initial phase is proposed in which single-bonded “Y-ladder” polymers rapidly elongate before undergoing a delayed transition to the double-stranded fibrils. Consistent with the data, this alternative mechanism can intrinsically generate frequent, random branching points in each growing fibril. The model predicts that, as a consequence, some branches in these expanding “lumps” eventually interconnect, forming the pervasive 3D network. While still growing, other branches will then undergo a Ca2+/length-dependent cooperative collapse on the resulting network scaffolding filaments, explaining their sudden thickening, low final density, and basic mechanical properties}, cin = {Neutronenstreuung ; JCNS-1 / JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II / ICS-1}, ddc = {540}, cid = {I:(DE-Juel1)JCNS-1-20110106 / I:(DE-Juel1)JCNS-FRM-II-20110218 / I:(DE-Juel1)ICS-1-20110106}, pnm = {451 - Soft Matter Composites (POF2-451) / 54G - JCNS (POF2-54G24)}, pid = {G:(DE-HGF)POF2-451 / G:(DE-HGF)POF2-54G24}, experiment = {EXP:(DE-MLZ)External-20140101}, typ = {PUB:(DE-HGF)16}, UT = {WOS:000334572200039}, doi = {10.1021/ja5002955}, url = {https://juser.fz-juelich.de/record/153366}, }