000015399 001__ 15399
000015399 005__ 20210129210624.0
000015399 0247_ $$2pmid$$apmid:21609770
000015399 0247_ $$2pmc$$apmc:PMC3129435
000015399 0247_ $$2DOI$$a10.1016/j.neuroimage.2011.05.021
000015399 0247_ $$2WOS$$aWOS:000292717900028
000015399 0247_ $$2altmetric$$aaltmetric:21805965
000015399 037__ $$aPreJuSER-15399
000015399 041__ $$aeng
000015399 082__ $$a610
000015399 084__ $$2WoS$$aNeurosciences
000015399 084__ $$2WoS$$aNeuroimaging
000015399 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000015399 1001_ $$0P:(DE-Juel1)131678$$aEickhoff, S.B.$$b0$$uFZJ
000015399 245__ $$aCo-activation patterns distinguish cortical modules, their connectivity and functional differentiation
000015399 260__ $$aOrlando, Fla.$$bAcademic Press$$c2011
000015399 300__ $$a938 - 949
000015399 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015399 3367_ $$2DataCite$$aOutput Types/Journal article
000015399 3367_ $$00$$2EndNote$$aJournal Article
000015399 3367_ $$2BibTeX$$aARTICLE
000015399 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015399 3367_ $$2DRIVER$$aarticle
000015399 440_0 $$04545$$aNeuroImage$$v57$$x1053-8119$$y3
000015399 500__ $$aThis work was partly funded by the Human Brain Project (R01-MH074457-01A1; S.B.E., A.R.L., and P.T.F), the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model; K.Z., S.B.E.), the DFG (IRTG 1328, S.B.E., D.B.) and the Helmholtz Alliance for Mental Health in an Aging Society (HelMA; K.Z.).
000015399 520__ $$aThe organization of the cerebral cortex into distinct modules may be described along several dimensions, most importantly, structure, connectivity and function. Identification of cortical modules by differences in whole-brain connectivity profiles derived from diffusion tensor imaging or resting state correlations has already been shown. These approaches, however, carry no task-related information. Hence, inference on the functional relevance of the ensuing parcellation remains tentative. Here, we demonstrate, that Meta-Analytic Connectivity Modeling (MACM) allows the delineation of cortical modules based on their whole-brain co-activation pattern across databased neuroimaging results. Using a model free approach, two regions of the medial pre-motor cortex, SMA and pre-SMA were differentiated solely based on their functional connectivity. Assessing the behavioral domain and paradigm class meta-data of the experiments associated with the clusters derived from the co-activation based parcellation moreover allows the identification of their functional characteristics. The ensuing hypotheses about functional differentiation and distinct functional connectivity between pre-SMA and SMA were then explicitly tested and confirmed in independent datasets using functional and resting state fMRI. Co-activation based parcellation thus provides a new perspective for identifying modules of functional connectivity and linking them to functional properties, hereby generating new and subsequently testable hypotheses about the organization of cortical modules.
000015399 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000015399 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1
000015399 588__ $$aDataset connected to Web of Science, Pubmed
000015399 65320 $$2Author$$aDatabase
000015399 65320 $$2Author$$afMRI
000015399 65320 $$2Author$$aAreas
000015399 65320 $$2Author$$aConnectivity
000015399 65320 $$2Author$$aAction
000015399 65320 $$2Author$$aSMA
000015399 650_2 $$2MeSH$$aAlgorithms
000015399 650_2 $$2MeSH$$aBrain: anatomy & histology
000015399 650_2 $$2MeSH$$aBrain: physiology
000015399 650_2 $$2MeSH$$aBrain Mapping: methods
000015399 650_2 $$2MeSH$$aCluster Analysis
000015399 650_2 $$2MeSH$$aHumans
000015399 650_2 $$2MeSH$$aImage Processing, Computer-Assisted: methods
000015399 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000015399 650_2 $$2MeSH$$aNeural Pathways: anatomy & histology
000015399 650_2 $$2MeSH$$aNeural Pathways: physiology
000015399 650_7 $$2WoSType$$aJ
000015399 7001_ $$0P:(DE-Juel1)136848$$aBzdok, D.$$b1$$uFZJ
000015399 7001_ $$0P:(DE-HGF)0$$aLaird, A.R.$$b2
000015399 7001_ $$0P:(DE-Juel1)VDB98850$$aRoski, C.$$b3$$uFZJ
000015399 7001_ $$0P:(DE-Juel1)VDB53458$$aCaspers, S.$$b4$$uFZJ
000015399 7001_ $$0P:(DE-Juel1)131714$$aZilles, K.$$b5$$uFZJ
000015399 7001_ $$0P:(DE-HGF)0$$aFox, P.T.$$b6
000015399 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2011.05.021$$gVol. 57, p. 938 - 949$$p938 - 949$$q57<938 - 949$$tNeuroImage$$v57$$x1053-8119$$y2011
000015399 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129435
000015399 909CO $$ooai:juser.fz-juelich.de:15399$$pVDB
000015399 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000015399 9141_ $$y2011
000015399 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000015399 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1
000015399 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000015399 970__ $$aVDB:(DE-Juel1)128307
000015399 980__ $$aVDB
000015399 980__ $$aConvertedRecord
000015399 980__ $$ajournal
000015399 980__ $$aI:(DE-Juel1)INM-2-20090406
000015399 980__ $$aUNRESTRICTED