001     15399
005     20210129210624.0
024 7 _ |2 pmid
|a pmid:21609770
024 7 _ |2 pmc
|a pmc:PMC3129435
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2011.05.021
024 7 _ |2 WOS
|a WOS:000292717900028
024 7 _ |a altmetric:21805965
|2 altmetric
037 _ _ |a PreJuSER-15399
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Neuroimaging
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S.B.
|b 0
|u FZJ
245 _ _ |a Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2011
300 _ _ |a 938 - 949
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4545
|a NeuroImage
|v 57
|x 1053-8119
|y 3
500 _ _ |a This work was partly funded by the Human Brain Project (R01-MH074457-01A1; S.B.E., A.R.L., and P.T.F), the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model; K.Z., S.B.E.), the DFG (IRTG 1328, S.B.E., D.B.) and the Helmholtz Alliance for Mental Health in an Aging Society (HelMA; K.Z.).
520 _ _ |a The organization of the cerebral cortex into distinct modules may be described along several dimensions, most importantly, structure, connectivity and function. Identification of cortical modules by differences in whole-brain connectivity profiles derived from diffusion tensor imaging or resting state correlations has already been shown. These approaches, however, carry no task-related information. Hence, inference on the functional relevance of the ensuing parcellation remains tentative. Here, we demonstrate, that Meta-Analytic Connectivity Modeling (MACM) allows the delineation of cortical modules based on their whole-brain co-activation pattern across databased neuroimaging results. Using a model free approach, two regions of the medial pre-motor cortex, SMA and pre-SMA were differentiated solely based on their functional connectivity. Assessing the behavioral domain and paradigm class meta-data of the experiments associated with the clusters derived from the co-activation based parcellation moreover allows the identification of their functional characteristics. The ensuing hypotheses about functional differentiation and distinct functional connectivity between pre-SMA and SMA were then explicitly tested and confirmed in independent datasets using functional and resting state fMRI. Co-activation based parcellation thus provides a new perspective for identifying modules of functional connectivity and linking them to functional properties, hereby generating new and subsequently testable hypotheses about the organization of cortical modules.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89571
|a 89571 - Connectivity and Activity (POF2-89571)
|c POF2-89571
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Algorithms
650 _ 2 |2 MeSH
|a Brain: anatomy & histology
650 _ 2 |2 MeSH
|a Brain: physiology
650 _ 2 |2 MeSH
|a Brain Mapping: methods
650 _ 2 |2 MeSH
|a Cluster Analysis
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Processing, Computer-Assisted: methods
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging
650 _ 2 |2 MeSH
|a Neural Pathways: anatomy & histology
650 _ 2 |2 MeSH
|a Neural Pathways: physiology
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Database
653 2 0 |2 Author
|a fMRI
653 2 0 |2 Author
|a Areas
653 2 0 |2 Author
|a Connectivity
653 2 0 |2 Author
|a Action
653 2 0 |2 Author
|a SMA
700 1 _ |0 P:(DE-Juel1)136848
|a Bzdok, D.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Laird, A.R.
|b 2
700 1 _ |0 P:(DE-Juel1)VDB98850
|a Roski, C.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB53458
|a Caspers, S.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)131714
|a Zilles, K.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Fox, P.T.
|b 6
773 _ _ |0 PERI:(DE-600)1471418-8
|a 10.1016/j.neuroimage.2011.05.021
|g Vol. 57, p. 938 - 949
|p 938 - 949
|q 57<938 - 949
|t NeuroImage
|v 57
|x 1053-8119
|y 2011
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129435
909 C O |o oai:juser.fz-juelich.de:15399
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89571
|a DE-HGF
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
970 _ _ |a VDB:(DE-Juel1)128307
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21