000155660 001__ 155660
000155660 005__ 20220930130032.0
000155660 0247_ $$2doi$$a10.1002/2013WR015177
000155660 0247_ $$2ISSN$$a0148-0227
000155660 0247_ $$2ISSN$$a1944-7973
000155660 0247_ $$2ISSN$$a0043-1397
000155660 0247_ $$2WOS$$aWOS:000342632300041
000155660 0247_ $$2Handle$$a2128/17092
000155660 0247_ $$2altmetric$$aaltmetric:2627237
000155660 037__ $$aFZJ-2014-04713
000155660 082__ $$a550
000155660 1001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b0$$eCorresponding Author$$ufzj
000155660 245__ $$aDetection of spatially limited high-porosity layers using crosshole GPR signal analysis and full-waveform inversion
000155660 260__ $$aWashington, DC$$bAGU$$c2014
000155660 3367_ $$2DRIVER$$aarticle
000155660 3367_ $$2DataCite$$aOutput Types/Journal article
000155660 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1414491321_26055
000155660 3367_ $$2BibTeX$$aARTICLE
000155660 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155660 3367_ $$00$$2EndNote$$aJournal Article
000155660 520__ $$aHigh-permittivity layers, related to high-porosity layers or impermeable clay lenses, can act as low-velocity electromagnetic waveguides. Electromagnetic wave phenomena associated with these features are complicated, not well known and not easy to interpret in borehole GPR data. Recently, a novel amplitude analysis approach was developed that is able to detect continuous low-velocity waveguides and their boundaries between boreholes by using maximum and minimum positions of the trace energy profiles in measured GPR data. By analyzing waveguide models of different thickness, dip, extent, permittivity, and conductivity parameters, we extend the amplitude analysis to detect spatially limited or terminated waveguides. Waveguides that show high-amplitude elongated wave trains are most probably caused by a change in porosity rather than a change in clay content. In a crosshole GPR data set from the Boise Hydrogeophysical Research Site, two terminated wave-guiding structures were detected using the extended amplitude analysis. Information gained from the amplitude analysis improved the starting model for full-waveform inversion which imaged the lateral extent and thickness of terminated waveguides with high resolution. Synthetic data calculated using the inverted permittivity and conductivity models show similar amplitudes and phases, as observed in the measured data, which indicates the reliability of the obtained models. Neutron-Neutron logging data from three boreholes confirm the changes in porosity and indicate that these layers were high-porosity sand units within low-porosity, poorly sorted sand, and gravel units.
000155660 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000155660 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000155660 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155660 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b1
000155660 7001_ $$0P:(DE-HGF)0$$aBradford, John$$b2
000155660 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
000155660 773__ $$0PERI:(DE-600)2029553-4$$a10.1002/2013WR015177$$gp. n/a - n/a$$n8$$p6966–6985$$tWater resources research$$v50$$x0043-1397$$y2014
000155660 8564_ $$uhttps://juser.fz-juelich.de/record/155660/files/FZJ-2014-04713.pdf$$yOpenAccess
000155660 8767_ $$92014-09-10$$d2014-10-14$$ePublication charges$$jZahlung erfolgt$$zUSD 625,-
000155660 909CO $$ooai:juser.fz-juelich.de:155660$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000155660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000155660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000155660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000155660 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vTerrestrische Umwelt$$x0
000155660 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000155660 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-255$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000155660 9141_ $$y2014
000155660 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000155660 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000155660 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000155660 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155660 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000155660 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000155660 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155660 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000155660 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000155660 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000155660 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000155660 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000155660 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000155660 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000155660 920__ $$lyes
000155660 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000155660 9801_ $$aFullTexts
000155660 980__ $$ajournal
000155660 980__ $$aVDB
000155660 980__ $$aUNRESTRICTED
000155660 980__ $$aI:(DE-Juel1)IBG-3-20101118
000155660 980__ $$aAPC