Journal Article FZJ-2014-04713

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Detection of spatially limited high-porosity layers using crosshole GPR signal analysis and full-waveform inversion

 ;  ;  ;

2014
AGU Washington, DC

Water resources research 50(8), 6966–6985 () [10.1002/2013WR015177]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: High-permittivity layers, related to high-porosity layers or impermeable clay lenses, can act as low-velocity electromagnetic waveguides. Electromagnetic wave phenomena associated with these features are complicated, not well known and not easy to interpret in borehole GPR data. Recently, a novel amplitude analysis approach was developed that is able to detect continuous low-velocity waveguides and their boundaries between boreholes by using maximum and minimum positions of the trace energy profiles in measured GPR data. By analyzing waveguide models of different thickness, dip, extent, permittivity, and conductivity parameters, we extend the amplitude analysis to detect spatially limited or terminated waveguides. Waveguides that show high-amplitude elongated wave trains are most probably caused by a change in porosity rather than a change in clay content. In a crosshole GPR data set from the Boise Hydrogeophysical Research Site, two terminated wave-guiding structures were detected using the extended amplitude analysis. Information gained from the amplitude analysis improved the starting model for full-waveform inversion which imaged the lateral extent and thickness of terminated waveguides with high resolution. Synthetic data calculated using the inverted permittivity and conductivity models show similar amplitudes and phases, as observed in the measured data, which indicates the reliability of the obtained models. Neutron-Neutron logging data from three boreholes confirm the changes in porosity and indicate that these layers were high-porosity sand units within low-porosity, poorly sorted sand, and gravel units.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246) (POF2-246)
  2. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2014
Database coverage:
Medline ; OpenAccess ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Current Contents - Social and Behavioral Sciences ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2014-09-01, last modified 2022-09-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)