000156102 001__ 156102
000156102 005__ 20220930130033.0
000156102 0247_ $$2doi$$a10.1063/1.4896286
000156102 0247_ $$2ISSN$$a1077-3118
000156102 0247_ $$2ISSN$$a0003-6951
000156102 0247_ $$2WOS$$aWOS:000342995800078
000156102 0247_ $$2Handle$$a2128/17339
000156102 037__ $$aFZJ-2014-04976
000156102 082__ $$a530
000156102 1001_ $$0P:(DE-HGF)0$$aWenz, Tobias$$b0$$eCorresponding Author
000156102 245__ $$aPhase coherent transport in hollow InAs nanowires
000156102 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2014
000156102 3367_ $$2DRIVER$$aarticle
000156102 3367_ $$2DataCite$$aOutput Types/Journal article
000156102 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1412249174_24567
000156102 3367_ $$2BibTeX$$aARTICLE
000156102 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000156102 3367_ $$00$$2EndNote$$aJournal Article
000156102 520__ $$aHollow InAs nanowires are produced from GaAs/InAs core/shell nanowires by wet chemical etching of the GaAs core. At room temperature, the resistivity of several nanowires is measured before and after removal of the GaAs core. The observed change in resistivity is explained by simulating the electronic states in both structures. At cryogenic temperatures, quantum transport in hollow InAs nanowires is studied. Flux periodic conductance oscillations are observed when the magnetic field is oriented parallel to the nanowire axis.
000156102 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000156102 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000156102 7001_ $$0P:(DE-HGF)0$$aRosien, Marion$$b1
000156102 7001_ $$0P:(DE-Juel1)140174$$aHaas, Fabian$$b2$$ufzj
000156102 7001_ $$0P:(DE-Juel1)141766$$aRieger, Torsten$$b3$$ufzj
000156102 7001_ $$0P:(DE-Juel1)125576$$aDemarina, Nataliya$$b4$$ufzj
000156102 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b5$$ufzj
000156102 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b6$$ufzj
000156102 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7$$ufzj
000156102 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b8$$ufzj
000156102 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4896286$$gVol. 105, no. 11, p. 113111 -$$n11$$p113111 -$$tApplied physics letters$$v105$$x1077-3118$$y2014
000156102 8564_ $$uhttp://scitation.aip.org/content/aip/journal/apl/105/11/10.1063/1.4896286
000156102 8564_ $$uhttps://juser.fz-juelich.de/record/156102/files/FZJ-2014-04976.pdf$$yOpenAccess
000156102 8767_ $$92014-10-06$$d2014-10-07$$ePublication charges$$jZahlung erfolgt
000156102 909CO $$ooai:juser.fz-juelich.de:156102$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140174$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141766$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125576$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000156102 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000156102 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000156102 9141_ $$y2014
000156102 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000156102 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000156102 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000156102 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000156102 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000156102 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000156102 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000156102 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000156102 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000156102 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000156102 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000156102 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000156102 920__ $$lyes
000156102 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000156102 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000156102 9801_ $$aFullTexts
000156102 980__ $$ajournal
000156102 980__ $$aVDB
000156102 980__ $$aUNRESTRICTED
000156102 980__ $$aI:(DE-Juel1)PGI-9-20110106
000156102 980__ $$aI:(DE-82)080009_20140620
000156102 980__ $$aAPC