000156102 001__ 156102 000156102 005__ 20220930130033.0 000156102 0247_ $$2doi$$a10.1063/1.4896286 000156102 0247_ $$2ISSN$$a1077-3118 000156102 0247_ $$2ISSN$$a0003-6951 000156102 0247_ $$2WOS$$aWOS:000342995800078 000156102 0247_ $$2Handle$$a2128/17339 000156102 037__ $$aFZJ-2014-04976 000156102 082__ $$a530 000156102 1001_ $$0P:(DE-HGF)0$$aWenz, Tobias$$b0$$eCorresponding Author 000156102 245__ $$aPhase coherent transport in hollow InAs nanowires 000156102 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2014 000156102 3367_ $$2DRIVER$$aarticle 000156102 3367_ $$2DataCite$$aOutput Types/Journal article 000156102 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1412249174_24567 000156102 3367_ $$2BibTeX$$aARTICLE 000156102 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000156102 3367_ $$00$$2EndNote$$aJournal Article 000156102 520__ $$aHollow InAs nanowires are produced from GaAs/InAs core/shell nanowires by wet chemical etching of the GaAs core. At room temperature, the resistivity of several nanowires is measured before and after removal of the GaAs core. The observed change in resistivity is explained by simulating the electronic states in both structures. At cryogenic temperatures, quantum transport in hollow InAs nanowires is studied. Flux periodic conductance oscillations are observed when the magnetic field is oriented parallel to the nanowire axis. 000156102 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0 000156102 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000156102 7001_ $$0P:(DE-HGF)0$$aRosien, Marion$$b1 000156102 7001_ $$0P:(DE-Juel1)140174$$aHaas, Fabian$$b2$$ufzj 000156102 7001_ $$0P:(DE-Juel1)141766$$aRieger, Torsten$$b3$$ufzj 000156102 7001_ $$0P:(DE-Juel1)125576$$aDemarina, Nataliya$$b4$$ufzj 000156102 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b5$$ufzj 000156102 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b6$$ufzj 000156102 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7$$ufzj 000156102 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b8$$ufzj 000156102 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4896286$$gVol. 105, no. 11, p. 113111 -$$n11$$p113111 -$$tApplied physics letters$$v105$$x1077-3118$$y2014 000156102 8564_ $$uhttp://scitation.aip.org/content/aip/journal/apl/105/11/10.1063/1.4896286 000156102 8564_ $$uhttps://juser.fz-juelich.de/record/156102/files/FZJ-2014-04976.pdf$$yOpenAccess 000156102 8767_ $$92014-10-06$$d2014-10-07$$ePublication charges$$jZahlung erfolgt 000156102 909CO $$ooai:juser.fz-juelich.de:156102$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140174$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141766$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125576$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000156102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b8$$kFZJ 000156102 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0 000156102 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0 000156102 9141_ $$y2014 000156102 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000156102 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000156102 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000156102 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000156102 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000156102 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000156102 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000156102 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000156102 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000156102 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences 000156102 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000156102 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000156102 920__ $$lyes 000156102 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000156102 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000156102 9801_ $$aFullTexts 000156102 980__ $$ajournal 000156102 980__ $$aVDB 000156102 980__ $$aUNRESTRICTED 000156102 980__ $$aI:(DE-Juel1)PGI-9-20110106 000156102 980__ $$aI:(DE-82)080009_20140620 000156102 980__ $$aAPC