000156418 001__ 156418
000156418 005__ 20240711092240.0
000156418 037__ $$aFZJ-2014-05161
000156418 082__ $$a660
000156418 1001_ $$0P:(DE-HGF)0$$aYazdanbakhsh, F.$$b0$$eCorresponding Author
000156418 245__ $$aCopper Exchanged Nanotitanate for High Temperature H2S Adsorption
000156418 260__ $$aEaston, Pa.$$bSoc.$$c2014
000156418 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1413200208_8764
000156418 3367_ $$2DataCite$$aOutput Types/Journal article
000156418 3367_ $$00$$2EndNote$$aJournal Article
000156418 3367_ $$2BibTeX$$aARTICLE
000156418 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000156418 3367_ $$2DRIVER$$aarticle
000156418 520__ $$aThe H2S breakthrough capacity of copper-exchanged Engelhard Titanosilicate-2 (ETS-2) was measured attemperatures up to 950 °C and it was found that the adsorbent efficiency remains unchanged across the entire temperaturerange. Below 750 °C, the adsorption capacity at breakthrough is 0.7 mol of H2S per mole of copper while above 750 °C thecapacity of the adsorbent is halved. The change in H2S capacity is due to Cu2+ reduction by the H2 which is formed through thethermal dissociation of H2S. The adsorbent shows good potential for use over a wide range of operating temperatures in H2Sscrubbing processes.
000156418 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000156418 7001_ $$0P:(DE-Juel1)129688$$aBläsing, Marc$$b1$$ufzj
000156418 7001_ $$0P:(DE-HGF)0$$aSawada, J.$$b2
000156418 7001_ $$0P:(DE-HGF)0$$aRezaei, S.$$b3
000156418 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b4$$ufzj
000156418 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b5$$ufzj
000156418 773__ $$0PERI:(DE-600)2096934-X$$p11734-11739$$tIndustrial and engineering chemistry / Product research and development$$v53$$x1541-4841$$y2014
000156418 8564_ $$uhttps://juser.fz-juelich.de/record/156418/files/FZJ-2014-05161.pdf$$yRestricted
000156418 909CO $$ooai:juser.fz-juelich.de:156418$$pVDB
000156418 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129688$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000156418 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000156418 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000156418 9132_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vEnergieeffizienz, Materialien und Ressourcen$$x0
000156418 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000156418 9141_ $$y2014
000156418 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000156418 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000156418 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000156418 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000156418 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000156418 980__ $$ajournal
000156418 980__ $$aVDB
000156418 980__ $$aI:(DE-Juel1)IEK-2-20101013
000156418 980__ $$aI:(DE-Juel1)IEK-1-20101013
000156418 980__ $$aUNRESTRICTED
000156418 981__ $$aI:(DE-Juel1)IMD-1-20101013
000156418 981__ $$aI:(DE-Juel1)IMD-2-20101013
000156418 981__ $$aI:(DE-Juel1)IEK-1-20101013