Home > Publications database > Copper Exchanged Nanotitanate for High Temperature H2S Adsorption > print |
001 | 156418 | ||
005 | 20240711092240.0 | ||
037 | _ | _ | |a FZJ-2014-05161 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Yazdanbakhsh, F. |0 P:(DE-HGF)0 |b 0 |e Corresponding Author |
245 | _ | _ | |a Copper Exchanged Nanotitanate for High Temperature H2S Adsorption |
260 | _ | _ | |a Easton, Pa. |c 2014 |b Soc. |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1413200208_8764 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a The H2S breakthrough capacity of copper-exchanged Engelhard Titanosilicate-2 (ETS-2) was measured attemperatures up to 950 °C and it was found that the adsorbent efficiency remains unchanged across the entire temperaturerange. Below 750 °C, the adsorption capacity at breakthrough is 0.7 mol of H2S per mole of copper while above 750 °C thecapacity of the adsorbent is halved. The change in H2S capacity is due to Cu2+ reduction by the H2 which is formed through thethermal dissociation of H2S. The adsorbent shows good potential for use over a wide range of operating temperatures in H2Sscrubbing processes. |
536 | _ | _ | |a 122 - Power Plants (POF2-122) |0 G:(DE-HGF)POF2-122 |c POF2-122 |f POF II |x 0 |
700 | 1 | _ | |a Bläsing, Marc |0 P:(DE-Juel1)129688 |b 1 |u fzj |
700 | 1 | _ | |a Sawada, J. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Rezaei, S. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Müller, Michael |0 P:(DE-Juel1)129765 |b 4 |u fzj |
700 | 1 | _ | |a Baumann, Stefan |0 P:(DE-Juel1)129587 |b 5 |u fzj |
773 | _ | _ | |0 PERI:(DE-600)2096934-X |p 11734-11739 |t Industrial and engineering chemistry / Product research and development |v 53 |y 2014 |x 1541-4841 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/156418/files/FZJ-2014-05161.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:156418 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129688 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129765 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129587 |
913 | 2 | _ | |a DE-HGF |b POF III |l Forschungsbereich Energie |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-111 |2 G:(DE-HGF)POF3-100 |v Energieeffizienz, Materialien und Ressourcen |x 0 |
913 | 1 | _ | |a DE-HGF |b Energie |l Rationelle Energieumwandlung und -nutzung |1 G:(DE-HGF)POF2-120 |0 G:(DE-HGF)POF2-122 |2 G:(DE-HGF)POF2-100 |v Power Plants |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |a Peer Review unknown |0 StatID:(DE-HGF)0040 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-2-20101013 |k IEK-2 |l Werkstoffstruktur und -eigenschaften |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-2-20101013 |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|