001     15775
005     20210129210632.0
024 7 _ |2 pmid
|a pmid:21718787
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2011.06.027
024 7 _ |2 WOS
|a WOS:000294525000010
037 _ _ |a PreJuSER-15775
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Neuroimaging
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |0 P:(DE-Juel1)VDB53458
|a Caspers, S.
|b 0
|u FZJ
245 _ _ |a Probabilistic fibre tract analysis of cytoarchtitectonically defined human inferior parietal lobule areas reveals similatrities to macaques
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2011
300 _ _ |a 362 - 380
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4545
|a NeuroImage
|v 58
|x 1053-8119
|y 2
500 _ _ |a This Human Brain Project/Neuroinformatics Research was funded by the National Institute of Biomedical Imaging and Bioengeneering, the National Institute of Neurological Disorders and Stroke and the National Institute of Mental Health (KZ). Further funding was granted by the Human Brain Project (R01-MH074457-01A1; SBE), the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model; KZ, SBE), and the Helmholtz Alliance for Mental Health in an Aging Society (HelMA; KZ).
520 _ _ |a The human inferior parietal lobule (IPL) is a multimodal brain region, subdivided in several cytoarchitectonic areas which are involved in neural networks related to spatial attention, language, and higher motor processing. Tracer studies in macaques revealed differential connectivity patterns of IPL areas as the respective structural basis. Evidence for comparable differential fibre tracts of human IPL is lacking. Here, anatomical connectivity of five cytoarchitectonic human IPL areas to 64 cortical targets was investigated using probabilistic tractography. Connection likelihood was assessed by evaluating the number of traces between seed and target against the distribution of traces from that seed to voxels in the same distance as the target. The main fibre tract pattern shifted gradually from rostral to caudal IPL: Rostral areas were predominantly connected to somatosensory and superior parietal areas while caudal areas more strongly connected with auditory, anterior temporal and higher visual cortices. All IPL areas were strongly connected with inferior frontal, insular and posterior temporal areas. These results showed striking similarities with connectivity patterns in macaques, providing further evidence for possible homologies between these two species. This shift in fibre tract pattern supports a differential functional involvement of rostral (higher motor functions) and caudal IPL (spatial attention), with probable overlapping language involvement. The differential functional involvement of IPL areas was further supported by hemispheric asymmetries of connection patterns which showed left-right differences especially with regard to connections to sensorimotor, inferior frontal and temporal areas.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89573
|a 89573 - Neuroimaging (POF2-89573)
|c POF2-89573
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Cerebral Cortex: anatomy & histology
650 _ 2 |2 MeSH
|a Cerebral Cortex: physiology
650 _ 2 |2 MeSH
|a Diffusion Tensor Imaging: methods
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Processing, Computer-Assisted
650 _ 2 |2 MeSH
|a Macaca
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Models, Statistical
650 _ 2 |2 MeSH
|a Nerve Fibers: physiology
650 _ 2 |2 MeSH
|a Neural Pathways: anatomy & histology
650 _ 2 |2 MeSH
|a Neural Pathways: physiology
650 _ 2 |2 MeSH
|a Parietal Lobe: anatomy & histology
650 _ 2 |2 MeSH
|a Parietal Lobe: physiology
650 _ 2 |2 MeSH
|a Species Specificity
650 _ 2 |2 MeSH
|a Young Adult
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Diffusion tensor imaging
653 2 0 |2 Author
|a DTI
653 2 0 |2 Author
|a Probabilistic tractography
653 2 0 |2 Author
|a Inferior parietal
653 2 0 |2 Author
|a Fibre tract
653 2 0 |2 Author
|a Cytoarchitecture
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S.B.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Rick, T.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a von Kapri, A.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Kuhlen, T.
|b 4
700 1 _ |0 P:(DE-Juel1)VDB34896
|a Huang, R.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)131794
|a Shah, N.J.
|b 6
|u FZJ
700 1 _ |0 P:(DE-Juel1)131714
|a Zilles, K.
|b 7
|u FZJ
773 _ _ |0 PERI:(DE-600)1471418-8
|a 10.1016/j.neuroimage.2011.06.027
|g Vol. 58, p. 362 - 380
|p 362 - 380
|q 58<362 - 380
|t NeuroImage
|v 58
|x 1053-8119
|y 2011
856 7 _ |u http://dx.doi.org/10.1016/j.neuroimage.2011.06.027
909 C O |o oai:juser.fz-juelich.de:15775
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-573
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Neuroimaging
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89573
|a DE-HGF
|v Neuroimaging
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|g INM
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
970 _ _ |a VDB:(DE-Juel1)129073
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21