Home > Publications database > Ray tracing for the optics at nano-textured ZnO–air and ZnO–silicon interfaces |
Journal Article | PreJuSER-16881 |
; ; ; ; ; ;
2011
Wiley
Chichester
This record in other databases:
Please use a persistent id in citations: doi:10.1002/pip.1097
Abstract: We investigate the scattering behavior of nano-textured ZnO-Air and ZnO-Silicon interfaces for the application in thin film silicon solar cells. Contrary to the common approach, the numerical solution of the Maxwell's equations, we introduce a ray tracing approach based on geometric optics and the measured interface topography. The validity of this model is discussed by means of scanning near-field optical microscopy (SNOM) measurements and numerical solutions of the Maxwell's equations. We show, that the ray tracing model can qualitatively describe the formation of micro lenses, which are the dominant feature of the local scattering properties of the investigated interfaces. A quantitative analysis for the ZnO-Silicon interface at lambda = 488 and 780 nm shows that the ray tracing model corresponds well to the numerical solution of the Maxwell's equations, especially within the first 1.5 mu m distance from the interface. Direct correlations between the locally scattered intensity and the interface topographies are found. Copyright (C) 2011 John Wiley & Sons, Ltd.
Keyword(s): J ; ray tracing (auto) ; interface (auto) ; light scattering (auto) ; SNOM (auto) ; ZnO (auto) ; TCO (auto) ; light trapping (auto) ; Chandezon (auto)
![]() |
The record appears in these collections: |