001     16881
005     20240708133627.0
024 7 _ |2 DOI
|a 10.1002/pip.1097
024 7 _ |2 WOS
|a WOS:000294777700011
024 7 _ |a altmetric:21806593
|2 altmetric
037 _ _ |a PreJuSER-16881
041 _ _ |a eng
082 _ _ |a 690
084 _ _ |2 WoS
|a Energy & Fuels
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |0 P:(DE-Juel1)2402
|a Schulte, M.
|b 0
|u FZJ
245 _ _ |a Ray tracing for the optics at nano-textured ZnO–air and ZnO–silicon interfaces
260 _ _ |a Chichester
|b Wiley
|c 2011
300 _ _ |a 724 - 732
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 22841
|a Progress in Photovoltaics: Research and Applications
|v 19
|x 1062-7995
|y 6
500 _ _ |a The authors thank Thomas Beckers and Reinhard Carius for the fruitful discussions and Carsten Rockstuhl for his cooperation. The authors also acknowledge financial support by the BMU (project number 0327625).
520 _ _ |a We investigate the scattering behavior of nano-textured ZnO-Air and ZnO-Silicon interfaces for the application in thin film silicon solar cells. Contrary to the common approach, the numerical solution of the Maxwell's equations, we introduce a ray tracing approach based on geometric optics and the measured interface topography. The validity of this model is discussed by means of scanning near-field optical microscopy (SNOM) measurements and numerical solutions of the Maxwell's equations. We show, that the ray tracing model can qualitatively describe the formation of micro lenses, which are the dominant feature of the local scattering properties of the investigated interfaces. A quantitative analysis for the ZnO-Silicon interface at lambda = 488 and 780 nm shows that the ray tracing model corresponds well to the numerical solution of the Maxwell's equations, especially within the first 1.5 mu m distance from the interface. Direct correlations between the locally scattered intensity and the interface topographies are found. Copyright (C) 2011 John Wiley & Sons, Ltd.
536 _ _ |0 G:(DE-Juel1)FUEK401
|2 G:(DE-HGF)
|a Erneuerbare Energien
|c P11
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a ray tracing
653 2 0 |2 Author
|a interface
653 2 0 |2 Author
|a light scattering
653 2 0 |2 Author
|a SNOM
653 2 0 |2 Author
|a ZnO
653 2 0 |2 Author
|a TCO
653 2 0 |2 Author
|a light trapping
653 2 0 |2 Author
|a Chandezon
700 1 _ |0 P:(DE-Juel1)130219
|a Bittkau, K.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB86995
|a Pieters, B. E.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB74616
|a Jorke, S.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB5910
|a Stiebig, H.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)130252
|a Hüpkes, J.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)130285
|a Rau, U.
|b 6
|u FZJ
773 _ _ |0 PERI:(DE-600)2023295-0
|a 10.1002/pip.1097
|g Vol. 19, p. 724 - 732
|p 724 - 732
|q 19<724 - 732
|t Progress in photovoltaics
|v 19
|x 1062-7995
|y 2011
856 7 _ |u http://dx.doi.org/10.1002/pip.1097
909 C O |o oai:juser.fz-juelich.de:16881
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK401
|a DE-HGF
|b Energie
|k P11
|l Erneuerbare Energien
|v Erneuerbare Energien
|x 0
913 2 _ |0 G:(DE-HGF)POF3-121
|1 G:(DE-HGF)POF3-120
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Erneuerbare Energien
|v Solar cells of the next generation
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|g IEK
|k IEK-5
|l Photovoltaik
|x 0
970 _ _ |a VDB:(DE-Juel1)131203
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21