Home > Publications database > 100 000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging > print |
001 | 171758 | ||
005 | 20250129092510.0 | ||
024 | 7 | _ | |2 doi |a 10.1109/JSTQE.2014.2341562 |
024 | 7 | _ | |2 ISSN |a 1077-260X |
024 | 7 | _ | |2 ISSN |a 1558-4542 |
024 | 7 | _ | |a WOS:000357661100001 |2 WOS |
024 | 7 | _ | |a altmetric:21824146 |2 altmetric |
037 | _ | _ | |a FZJ-2014-05324 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Bronzi, Danilo |b 0 |e Corresponding Author |
245 | _ | _ | |a 100 000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging |
260 | _ | _ | |a New York, NY |b IEEE |c 2014 |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1421066161_25620 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a We report on the design and characterization of a multipurpose 64 × 32 CMOS single-photon avalanche diode (SPAD) array. The chip is fabricated in a high-voltage 0.35-μm CMOS technology and consists of 2048 pixels, each combining a very low noise (100 cps at 5-V excess bias) 30-μm SPAD, a prompt avalanche sensing circuit, and digital processing electronics. The array not only delivers two-dimensional intensity information through photon counting in either free-running (down to 10-μs integration time) or time-gated mode, but can also perform smart light demodulation with in-pixel background suppression. The latter feature enables phase-resolved imaging for extracting either three-dimensional depth-resolved images or decay lifetime maps, bymeasuring the phase shift between amodulated excitation light and the reflected photons. Pixel-level memories enable fully parallel processing and global-shutter readout, preventing motion artifacts (e.g., skew, wobble, motion blur) and partial exposure effects. The array is able to acquire very fast optical events at high frame-rate (up to 100 000 fps) and at single-photon level. Lownoise SPADs ensure high dynamic range (up to 110 dB at 100 fps) with peak photon detection efficiency of almost 50% at 410 nm. The SPAD imager provides different operating modes, thus, enabling both time-domain applications, like fluorescence lifetime imaging (FLIM) and fluorescence correlation spectroscopy, as well as frequency-domain FLIM and lock-in 3-D ranging for automotive vision and lidar. |
536 | _ | _ | |0 G:(DE-HGF)POF2-143 |a 143 - Radiation Research (POF2-143) |c POF2-143 |f POF II |x 0 |
536 | _ | _ | |0 G:(DE-HGF)POF2-434 |a 434 - Optics and Photonics (POF2-434) |c POF2-434 |f POF II |x 1 |
536 | _ | _ | |0 G:(DE-HGF)POF2-433 |a 433 - Process Development (POF2-433) |c POF2-433 |f POF II |x 2 |
536 | _ | _ | |0 G:(DE-HGF)POF2-472 |a 472 - Key Technologies and Innovation Processes (POF2-472) |c POF2-472 |f POF II |x 3 |
536 | _ | _ | |0 G:(DE-HGF)POF2-541 |a 541 - Photons (POF2-541) |c POF2-541 |f POF II |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Villa, Federica |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Tisa, Simone |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Tosi, Alberto |b 3 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Zappa, Franco |b 4 |
700 | 1 | _ | |0 P:(DE-Juel1)161528 |a Durini, Daniel |b 5 |u fzj |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Weyers, Sascha |b 6 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Brockherde, Werner |b 7 |
773 | _ | _ | |0 PERI:(DE-600)2025385-0 |a 10.1109/JSTQE.2014.2341562 |g Vol. 20, no. 6, p. 1 - 10 |n 6 |p 1 - 10 |t IEEE journal of selected topics in quantum electronics |v 20 |x 1558-4542 |y 2014 |
856 | 4 | _ | |u http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6872788 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/171758/files/FZJ-2014-05324.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:171758 |p VDB |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)161528 |a Forschungszentrum Jülich GmbH |b 5 |k FZJ |
913 | 2 | _ | |0 G:(DE-HGF)POF3-431 |1 G:(DE-HGF)POF3-430 |2 G:(DE-HGF)POF3-400 |a DE-HGF |b Forschungsbereich Luftfahrt, Raumfahrt und Verkehr |l Verkehr |v Terrestrial Vehicles |x 0 |
913 | 2 | _ | |0 G:(DE-HGF)POF3-422 |1 G:(DE-HGF)POF3-420 |2 G:(DE-HGF)POF3-400 |a DE-HGF |b Forschungsbereich Luftfahrt, Raumfahrt und Verkehr |l Raumfahrt |v Communication and Navigation |x 1 |
913 | 2 | _ | |0 G:(DE-HGF)POF3-533 |1 G:(DE-HGF)POF3-530 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Science and Technology of Nanosystems |v Optics and Photonics |x 2 |
913 | 2 | _ | |0 G:(DE-HGF)POF3-632 |1 G:(DE-HGF)POF3-630 |2 G:(DE-HGF)POF3-600 |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |v Detector technology and systems |x 3 |
913 | 1 | _ | |0 G:(DE-HGF)POF2-143 |1 G:(DE-HGF)POF2-140 |2 G:(DE-HGF)POF2-100 |a DE-HGF |b Energie |l Nukleare Sicherheitsforschung |v Radiation Research |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
913 | 1 | _ | |0 G:(DE-HGF)POF2-434 |1 G:(DE-HGF)POF2-430 |2 G:(DE-HGF)POF2-400 |a DE-HGF |b Schlüsseltechnologien |v Optics and Photonics |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l NANOMIKRO |
913 | 1 | _ | |0 G:(DE-HGF)POF2-433 |1 G:(DE-HGF)POF2-430 |2 G:(DE-HGF)POF2-400 |a DE-HGF |b Schlüsseltechnologien |v Process Development |x 2 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l NANOMIKRO |
913 | 1 | _ | |0 G:(DE-HGF)POF2-472 |1 G:(DE-HGF)POF2-470 |2 G:(DE-HGF)POF2-100 |a DE-HGF |b Energie |v Key Technologies and Innovation Processes |x 3 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Technologie, Innovation und Gesellschaft |
913 | 1 | _ | |0 G:(DE-HGF)POF2-541 |1 G:(DE-HGF)POF2-540 |2 G:(DE-HGF)POF2-500 |a DE-HGF |b Struktur der Materie |v Photons |x 4 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Forschung mit Photonen, Neutronen, Ionen |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)1160 |2 StatID |a DBCoverage |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ZEA-2-20090406 |k ZEA-2 |l Zentralinstitut für Elektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ZEA-2-20090406 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|