001     171759
005     20250129092510.0
024 7 _ |a 10.1109/JSTQE.2014.2342197
|2 doi
024 7 _ |a 1077-260X
|2 ISSN
024 7 _ |a 1558-4542
|2 ISSN
024 7 _ |a WOS:000357666800001
|2 WOS
024 7 _ |a altmetric:21824147
|2 altmetric
037 _ _ |a FZJ-2014-05325
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Villa, Federica
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight
260 _ _ |a New York, NY
|c 2014
|b IEEE
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1421066485_25619
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We present a CMOS imager consisting of 32 × 32 smart pixels, each one able to detect single photons in the 300 – 900 nm wavelength range and to perform both photon-counting and photon-timing operations on very fast optical events with faint intensities. In photon-counting mode, the imager provides photonnumber (i.e., intensity) resolvedmovies of the scene under observation, up to 100 000 frames/s. In photon-timing, the imager provides photon arrival times with 312 ps resolution. The result are videos with either time-resolved (e.g., fluorescence) maps of a sample, or 3-D depth-resolvedmaps of a target scene. The imager is fabricated in a cost-effective 0.35-μmCMOStechnology, automotive certified. Each pixel consists of a single-photon avalanche diode with 30 μm photoactive diameter, coupled to an in-pixel 10-bit time-to-digital converter with 320-ns full-scale range, an INL of 10% LSB and a DNL of 2% LSB. The chip operates in global shutter mode, with full frame times down to 10 μs and just 1-ns conversion time. The reconfigurable imager design enables a broad set of applications, like time-resolved spectroscopy, fluorescence lifetime imaging, diffusive optical tomography, molecular imaging, time-of-flight 3-D ranging and atmospheric layer sensing through LIDAR.
536 _ _ |a 434 - Optics and Photonics (POF2-434)
|0 G:(DE-HGF)POF2-434
|c POF2-434
|f POF II
|x 0
536 _ _ |a 433 - Process Development (POF2-433)
|0 G:(DE-HGF)POF2-433
|c POF2-433
|f POF II
|x 1
536 _ _ |a 541 - Photons (POF2-541)
|0 G:(DE-HGF)POF2-541
|c POF2-541
|f POF II
|x 2
536 _ _ |0 G:(DE-HGF)POF2-631
|c POF2-631
|f POF II
|x 3
|a 631 - Terrestrial Vehicles (POF2-631)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Lussana, Rudi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bronzi, Danilo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tisa, Simone
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tosi, Alberto
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zappa, Franco
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dalla Mora, Alberto
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Contini, Davide
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Durini, Daniel
|0 P:(DE-Juel1)161528
|b 8
|u fzj
700 1 _ |a Weyers, Sasha
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Brockherde, Werner
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1109/JSTQE.2014.2342197
|g Vol. 20, no. 6, p. 1 - 10
|0 PERI:(DE-600)2025385-0
|n 6
|p 1 - 10
|t IEEE journal of selected topics in quantum electronics
|v 20
|y 2014
|x 1558-4542
856 4 _ |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6862847
856 4 _ |u https://juser.fz-juelich.de/record/171759/files/FZJ-2014-05325.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:171759
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)161528
913 2 _ |a DE-HGF
|b Key Technologies
|l Science and Technology of Nanosystems
|1 G:(DE-HGF)POF3-530
|0 G:(DE-HGF)POF3-533
|2 G:(DE-HGF)POF3-500
|v Optics and Photonics
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 1
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-632
|2 G:(DE-HGF)POF3-600
|v Detector technology and systems
|x 2
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-430
|0 G:(DE-HGF)POF2-434
|2 G:(DE-HGF)POF2-400
|v Optics and Photonics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l NANOMIKRO
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-430
|0 G:(DE-HGF)POF2-433
|2 G:(DE-HGF)POF2-400
|v Process Development
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l NANOMIKRO
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-541
|2 G:(DE-HGF)POF2-500
|v Photons
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |a DE-HGF
|b Luftfahrt, Raumfahrt und Verkehr
|l Verkehr
|1 G:(DE-HGF)POF2-630
|0 G:(DE-HGF)POF2-631
|2 G:(DE-HGF)POF2-600
|x 3
|4 G:(DE-HGF)POF
|v Terrestrial Vehicles
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21