001     171993
005     20240708133746.0
024 7 _ |a 10.1139/cjp-2013-0640
|2 doi
024 7 _ |a 0008-4204
|2 ISSN
024 7 _ |a 1208-6045
|2 ISSN
024 7 _ |a WOS:000339379500084
|2 WOS
024 7 _ |a altmetric:2346512
|2 altmetric
037 _ _ |a FZJ-2014-05547
082 _ _ |a 530
100 1 _ |a Smirnov, V.
|0 P:(DE-Juel1)130297
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a p- and n-type microcrystalline silicon oxide (μc-SiO $_{x}$ :H) for applications in thin film silicon tandem solar cells 1
260 _ _ |a Ottawa, Ontario
|c 2014
|b NRC Research Press
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1415687512_4061
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We report on the development and application of p- and n-type hydrogenated microcrystalline silicon oxide (μc-SiOx:H) alloys in tandem thin film silicon solar cells. Our results show that the optical, electrical, and structural properties of μc-SiOx:H can be conveniently tuned over a wide range to fulfil the requirements for solar cell applications. We have shown that adding of PH3 gas during deposition tends to increase crystallinity of μc-SiOx:H layers, while additional trimethylboron (TMB) tends to suppress crystalline growth. When applied in tandem solar cells, both p- and n-type μc-SiOx:H lead to a remarkable increase in the top cell current. Taking advantage of low refractive index and high optical band gap of μc-SiOx:H allows the achievement of high efficiencies of 13.1% (initial) and 11.8% (stabilized)
536 _ _ |a 111 - Thin Film Photovoltaics (POF2-111)
|0 G:(DE-HGF)POF2-111
|c POF2-111
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Lambertz, A.
|0 P:(DE-Juel1)130263
|b 1
|u fzj
700 1 _ |a Tillmanns, S.
|0 P:(DE-Juel1)130269
|b 2
|u fzj
700 1 _ |a Finger, F.
|0 P:(DE-Juel1)130238
|b 3
|u fzj
773 _ _ |a 10.1139/cjp-2013-0640
|g Vol. 92, no. 7/8, p. 932 - 935
|0 PERI:(DE-600)2021497-2
|n 7/8
|p 932 - 935
|t Canadian journal of physics
|v 92
|y 2014
|x 1208-6045
909 C O |o oai:juser.fz-juelich.de:171993
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130297
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130269
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130238
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Erneuerbare Energien
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF2-110
|0 G:(DE-HGF)POF2-111
|2 G:(DE-HGF)POF2-100
|v Thin Film Photovoltaics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21