001     172016
005     20240708133747.0
024 7 _ |a 10.1139/cjp-2013-0636
|2 doi
024 7 _ |a 0008-4204
|2 ISSN
024 7 _ |a 1208-6045
|2 ISSN
024 7 _ |a WOS:000339379500049
|2 WOS
024 7 _ |a altmetric:2069633
|2 altmetric
037 _ _ |a FZJ-2014-05565
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Michard, S.
|0 P:(DE-Juel1)141652
|b 0
245 _ _ |a Investigation of porosity and atmospheric gas diffusion in microcrystalline silicon fabricated at high growth rates
260 _ _ |a Ottawa, Ontario
|c 2014
|b NRC Research Press
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1415171717_23051
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The effects of postdeposition air exposure of microcrystalline silicon films, prepared at varied deposition rates, are investigated. The changes in the oxygen content, evaluated from Fourier transform infrared spectroscopy measurements, were studied over a period of time after deposition (up to 180 days) depending on deposition rate and Raman intensity ratio. Two types of behavior were identified: in the case of highly crystalline samples, an oxygen uptake increases with increasing Raman intensity ratio; while less crystalline samples were found to be more stable against oxygen incorporation. These observations are related to the film microstructure and porosity and are linked to the variations in Raman intensity ratio and growth rate of microcrystalline silicon films.
536 _ _ |a 111 - Thin Film Photovoltaics (POF2-111)
|0 G:(DE-HGF)POF2-111
|c POF2-111
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Meier, Matthias
|0 P:(DE-Juel1)130830
|b 1
|e Corresponding Author
700 1 _ |a Zastrow, U.
|0 P:(DE-Juel1)130309
|b 2
700 1 _ |a Astakhov, O.
|0 P:(DE-Juel1)130212
|b 3
700 1 _ |a Finger, F.
|0 P:(DE-Juel1)130238
|b 4
773 _ _ |a 10.1139/cjp-2013-0636
|g Vol. 92, no. 7/8, p. 774 - 777
|0 PERI:(DE-600)2021497-2
|n 7/8
|p 774 - 777
|t Canadian journal of physics
|v 92
|y 2014
|x 1208-6045
909 C O |o oai:juser.fz-juelich.de:172016
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)141652
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130830
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130309
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130212
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130238
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Erneuerbare Energien
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF2-110
|0 G:(DE-HGF)POF2-111
|2 G:(DE-HGF)POF2-100
|v Thin Film Photovoltaics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21