Contribution to a conference proceedings FZJ-2014-05595

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
InGaN nano-LEDs for energy saving optoelectronics

 ;  ;  ;  ;  ;  ;  ;

2014
IEEE Danver, MA 01923
ISBN: 978-1-4799-54759

ASDAM 2014, SmoleniceSmolenice, Slovakia, 20 Oct 2014 - 22 Oct 20142014-10-202014-10-22 Danver, MA 01923 : IEEE 315-318 ()

Please use a persistent id in citations:

Abstract: Vertically integrated III-nitride nano-LEDs designed for operation in thetelecommunication-wavelength range were fabricated and tested in the (p-GaN/InGaN/n-GaN/sapphire) material system. We found that the band edgeluminescence energy of the nano-LEDs could be engineered by their size andby the strain interaction with the masked SiO2/GaN substrates; it dependslinearly on the structure size. The results of reliability measurements provethat our technological process is perfectly suited for long-term operation ofthe LEDs without any indication of degradation effects. The presentedtechnology shows strong potential for future low energy consumptionoptoelectronics.1. IntroductionSingle photon emitters based on InGaN nano-LEDs (light emitting diodes) operating atroom temperature are the key to enable future low energy consumption, highly secure andultrafast optoelectronics [1]. There is an especially strong need to develop such emittingsources at the wavelengths used for telecommunication, which are fully compatible withestablished communication systems. Major challenges are the whole nano-LED integrationtechnology and especially the contacts. The top contact should be highly electricallyconductive, highly optically transparent, thermally and mechanically stable and simple tofabricate.2. Device fabricationFirst, we started with the site-controlled growth of InGaN nanostructures via catalystfreeselective-area MOVPE [2]. The manufacturing process was optimized with respect to themask pattern in order to be able to fabricate individually addressable InGaN nanopyramidbased nano-LEDs. The starting point for growth were uniform and smooth n-GaN layers of atleast 1.3μm on sapphire (c-plane) masked with SiO2. Afterwards a hexagonally arranged arrayof openings was defined by electron beam lithography followed by reactive ion etching (RIE)with trifluoromethane (CHF3) gas. The separation distance was fixed to 3μm and the bottomhole diameter was varied from 20 nm to 100 nm. All samples were grown by MOVPE in anAIX 200/4 RF-S horizontal flow reactor (AIXTRON). The growth parameters were tunedwith respect to the highest possible selectivity. After this optimization, the growth time was978-1-

Keyword(s): Information Technology and Functional Materials (1st)


Contributing Institute(s):
  1. Halbleiter-Nanoelektronik (PGI-9)
Research Program(s):
  1. 421 - Frontiers of charge based Electronics (POF2-421) (POF2-421)
Experiment(s):
  1. Detectors/Electronics

Appears in the scientific report 2014
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Institutssammlungen > PGI > PGI-9
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2014-10-31, letzte Änderung am 2021-01-29


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)