000172187 001__ 172187
000172187 005__ 20210129214402.0
000172187 0247_ $$2doi$$a10.1371/journal.pone.0085070
000172187 0247_ $$2WOS$$aWOS:000330235100053
000172187 0247_ $$2Handle$$a2128/9137
000172187 0247_ $$2altmetric$$aaltmetric:2047579
000172187 0247_ $$2pmid$$apmid:24454793
000172187 037__ $$aFZJ-2014-05684
000172187 082__ $$a500
000172187 1001_ $$0P:(DE-HGF)0$$aSmidt, Hauke$$b0$$eCorresponding Author
000172187 245__ $$aBacteria and Fungi Respond Differently to Multifactorial Climate Change in a Temperate Heathland, Traced with 13C-Glycine and FACE CO2
000172187 260__ $$aLawrence, Kan.$$bPLoS$$c2014
000172187 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1415607105_16490
000172187 3367_ $$2DataCite$$aOutput Types/Journal article
000172187 3367_ $$00$$2EndNote$$aJournal Article
000172187 3367_ $$2BibTeX$$aARTICLE
000172187 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172187 3367_ $$2DRIVER$$aarticle
000172187 520__ $$aIt is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS).Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ~−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future changes in substrate availability and climatic factors.
000172187 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000172187 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000172187 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172187 7001_ $$0P:(DE-HGF)0$$aDungait, Jennifer A. J.$$b1
000172187 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b2$$ufzj
000172187 7001_ $$0P:(DE-HGF)0$$aSelsted, Merete B.$$b3
000172187 7001_ $$0P:(DE-HGF)0$$aAmbus, Per$$b4
000172187 7001_ $$0P:(DE-HGF)0$$aMichelsen, Anders$$b5
000172187 7001_ $$0P:(DE-HGF)0$$aSmidt, Hauke$$b6
000172187 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0085070$$gVol. 9, no. 1, p. e85070 -$$n1$$pe85070 -$$tPLoS one$$v9$$x1932-6203$$y2014
000172187 8564_ $$uhttps://juser.fz-juelich.de/record/172187/files/FZJ-2014-05684.pdf$$yOpenAccess
000172187 909CO $$ooai:juser.fz-juelich.de:172187$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000172187 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000172187 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172187 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000172187 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000172187 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172187 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000172187 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172187 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172187 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000172187 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172187 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172187 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172187 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172187 9141_ $$y2014
000172187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172187 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vTerrestrische Umwelt$$x0
000172187 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000172187 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-255$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000172187 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000172187 980__ $$ajournal
000172187 980__ $$aVDB
000172187 980__ $$aUNRESTRICTED
000172187 980__ $$aFullTexts
000172187 980__ $$aI:(DE-Juel1)IBG-3-20101118
000172187 9801_ $$aFullTexts