001     172187
005     20210129214402.0
024 7 _ |a 10.1371/journal.pone.0085070
|2 doi
024 7 _ |a WOS:000330235100053
|2 WOS
024 7 _ |a 2128/9137
|2 Handle
024 7 _ |a altmetric:2047579
|2 altmetric
024 7 _ |a pmid:24454793
|2 pmid
037 _ _ |a FZJ-2014-05684
082 _ _ |a 500
100 1 _ |0 P:(DE-HGF)0
|a Smidt, Hauke
|b 0
|e Corresponding Author
245 _ _ |a Bacteria and Fungi Respond Differently to Multifactorial Climate Change in a Temperate Heathland, Traced with 13C-Glycine and FACE CO2
260 _ _ |a Lawrence, Kan.
|b PLoS
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1415607105_16490
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS).Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ~−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future changes in substrate availability and climatic factors.
536 _ _ |0 G:(DE-HGF)POF2-246
|a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|c POF2-246
|f POF II
|x 0
536 _ _ |0 G:(DE-HGF)POF3-255
|f POF III
|x 1
|c POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Dungait, Jennifer A. J.
|b 1
700 1 _ |0 P:(DE-Juel1)145865
|a Bol, Roland
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Selsted, Merete B.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Ambus, Per
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Michelsen, Anders
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Smidt, Hauke
|b 6
773 _ _ |0 PERI:(DE-600)2267670-3
|a 10.1371/journal.pone.0085070
|g Vol. 9, no. 1, p. e85070 -
|n 1
|p e85070 -
|t PLoS one
|v 9
|x 1932-6203
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/172187/files/FZJ-2014-05684.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:172187
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145865
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|b POF III
|l Marine, Küsten- und Polare Systeme
|v Terrestrische Umwelt
|x 0
913 1 _ |0 G:(DE-HGF)POF2-246
|1 G:(DE-HGF)POF2-240
|2 G:(DE-HGF)POF2-200
|a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |9 G:(DE-HGF)POF3-255
|a DE-HGF
|x 1
|v Terrestrial Systems: From Observation to Prediction
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|l Terrestrische Umwelt
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21