001     172421
005     20240313103115.0
024 7 _ |a 10.3389/fninf.2014.00078
|2 doi
024 7 _ |a WOS:000348207000001
|2 WOS
024 7 _ |a 2128/9103
|2 Handle
024 7 _ |a altmetric:2771948
|2 altmetric
024 7 _ |a pmid:25346682
|2 pmid
037 _ _ |a FZJ-2014-05899
082 _ _ |a 610
100 1 _ |a Kunkel, Susanne
|0 P:(DE-Juel1)151364
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Spiking network simulation code for petascale computers
260 _ _ |a Lausanne
|c 2014
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1563263596_389
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputer. We show that the novel architecture scales to the largest petascale supercomputers available today.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 0
|f POF II
536 _ _ |a 331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)
|0 G:(DE-HGF)POF2-331
|c POF2-331
|x 1
|f POF II
536 _ _ |a Brain-Scale Simulations (jinb33_20121101)
|0 G:(DE-Juel1)jinb33_20121101
|c jinb33_20121101
|x 2
|f Brain-Scale Simulations
536 _ _ |a HASB - Helmholtz Alliance on Systems Biology (HGF-SystemsBiology)
|0 G:(DE-Juel1)HGF-SystemsBiology
|c HGF-SystemsBiology
|x 3
|f HASB-2008-2012
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|x 4
|f SMHB
536 _ _ |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)
|0 G:(DE-Juel1)HGF-SMHB-2014-2018
|c HGF-SMHB-2014-2018
|x 5
|f MSNN
536 _ _ |a BRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921)
|0 G:(EU-Grant)269921
|c 269921
|x 6
|f FP7-ICT-2009-6
536 _ _ |a HBP - The Human Brain Project (604102)
|0 G:(EU-Grant)604102
|c 604102
|x 7
|f FP7-ICT-2013-FET-F
536 _ _ |a BTN-Peta - The Next-Generation Integrated Simulation of Living Matter (BTN-Peta-2008-2012)
|0 G:(DE-Juel1)BTN-Peta-2008-2012
|c BTN-Peta-2008-2012
|x 8
|f BTN-Peta-2008-2012
536 _ _ |a W2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)
|0 G:(DE-HGF)B1175.01.12
|c B1175.01.12
|x 9
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 10
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Schmidt, Maximilian
|0 P:(DE-Juel1)145897
|b 1
|u fzj
700 1 _ |a Eppler, Jochen M.
|0 P:(DE-Juel1)142538
|b 2
|u fzj
700 1 _ |a Plesser, Hans E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Masumoto, Gen
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Igarashi, Jun
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ishii, Shin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Fukai, Tomoki
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 8
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 9
|u fzj
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 10
|u fzj
773 _ _ |a 10.3389/fninf.2014.00078
|g Vol. 8
|0 PERI:(DE-600)2452979-5
|p 78
|t Frontiers in neuroinformatics
|v 8
|y 2014
|x 1662-5196
856 4 _ |u https://juser.fz-juelich.de/record/172421/files/FZJ-2014-05899.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:172421
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)151364
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145897
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)142538
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)151166
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)144806
913 2 _ |a DE-HGF
|b POF III
|l Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Supercomputing & Big Data
|x 0
913 2 _ |a DE-HGF
|b POF III
|l Key Technologies
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Decoding the Human Brain
|x 1
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-331
|2 G:(DE-HGF)POF2-300
|v Signalling Pathways and Mechanisms in the Nervous System
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828
981 _ _ |a I:(DE-Juel1)INM-6-20090406
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21