001     173005
005     20240610120434.0
024 7 _ |a 10.1016/j.calphad.2013.12.007
|2 doi
024 7 _ |a WOS:000337880600017
|2 WOS
037 _ _ |a FZJ-2014-06419
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Pavlychkov, D.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Al-Cr-Fe phase diagram. Isothermal sections in the region above 50 at% Al.
260 _ _ |a Amsterdam [u.a.]
|c 2014
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1417795303_21915
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The Al–Cr–Fe phase diagram was studied in the compositional range of 50–100 at% Al and partial isothermal sections were determined at 1160, 1100, 1075, 1042, 1000, 900, 800 and 700 °C. In the low-Al part of the studied compositional region the isostructural high-temperature Al–Cr and Al–Fe γ1-phases form a continuous region of solid solutions. Both binary Al13Fe4 and Al5Fe2 were found to dissolve up to 6.5 at% Cr while Al2Fe was found to extend up to 4.1 at% Cr. The solid solutions based on the Al–Cr γ2 and μ phases were determined to reach 35.2 and 1.3 at% Fe, respectively. The dissolution of Cr in the Al–Fe binaries only slightly influences their Al concentrations, while the Al–Cr binaries exhibit decreasing Al concentration with increasing Fe concentration. The Al–Cr η-phase dissolves up to 5 at% Fe, which results in a sharp decrease of its Al concentration and increase of melting temperatures. The earlier reported existence of a ternary decagonal D3-phase and three complex periodic phases O1, H and ε was confirmed and their compositions at different temperatures were specified.
536 _ _ |a 424 - Exploratory materials and phenomena (POF2-424)
|0 G:(DE-HGF)POF2-424
|c POF2-424
|f POF II
|x 0
700 1 _ |a Przepiorzynski, B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kowalski, W.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Velikanova, T.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Grushko, Benjamin
|0 P:(DE-Juel1)130672
|b 4
|u fzj
773 _ _ |a 10.1016/j.calphad.2013.12.007
|0 PERI:(DE-600)1501512-9
|p 194 - 203
|t Calphad
|v 45
|y 2014
|x 0364-5916
856 4 _ |u https://juser.fz-juelich.de/record/173005/files/FZJ-2014-06419.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:173005
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130672
913 2 _ |a DE-HGF
|b Forschungsbereich Luftfahrt, Raumfahrt und Verkehr
|l Raumfahrt
|1 G:(DE-HGF)POF3-420
|0 G:(DE-HGF)POF3-424
|2 G:(DE-HGF)POF3-400
|v Research under Space Conditions
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-424
|2 G:(DE-HGF)POF2-400
|v Exploratory materials and phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21