001     17818
005     20210129210700.0
024 7 _ |2 pmid
|a pmid:21692883
024 7 _ |2 DOI
|a 10.1111/j.1460-9568.2011.07748.x
024 7 _ |2 WOS
|a WOS:000293350200005
037 _ _ |a PreJuSER-17818
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
100 1 _ |0 P:(DE-HGF)0
|a Poil, S.S.
|b 0
245 _ _ |a Fast network oscillations in vitro exhibit a slow decay of temporal auto-correlations
260 _ _ |a Oxford [u.a.]
|b Blackwell
|c 2011
300 _ _ |a 394 - 403
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 1951
|a European Journal of Neuroscience
|v 34
|x 0953-816X
|y 3
500 _ _ |a This work was supported by The Netherlands Organization for Scientific Research (NWO) [Toptalent grant to S.-S.P.; R.J. was supported by a Computational Life Sciences grant (635.100.005); Innovative Research Incentive Schemes grant to K. L.-H.], the Neuro-Bsik Mouse Phenomics consortium (http://www.neurobsik.nl) (grant to A. B. B), the Royal Netherlands Academy of Arts and Sciences (KNAW) (fellowship to H. D. M.), and the Danish Research Agency (to K.L.-H.).
520 _ _ |a Ongoing neuronal oscillations in vivo exhibit non-random amplitude fluctuations as reflected in a slow decay of temporal auto-correlations that persist for tens of seconds. Interestingly, the decay of auto-correlations is altered in several brain-related disorders, including epilepsy, depression and Alzheimer's disease, suggesting that the temporal structure of oscillations depends on intact neuronal networks in the brain. Whether structured amplitude modulation occurs only in the intact brain or whether isolated neuronal networks can also give rise to amplitude modulation with a slow decay is not known. Here, we examined the temporal structure of cholinergic fast network oscillations in acute hippocampal slices. For the first time, we show that a slow decay of temporal correlations can emerge from synchronized activity in isolated hippocampal networks from mice, and is maximal at intermediate concentrations of the cholinergic agonist carbachol. Using zolpidem, a positive allosteric modulator of GABA(A) receptor function, we found that increased inhibition leads to longer oscillation bursts and more persistent temporal correlations. In addition, we asked if these findings were unique for mouse hippocampus, and we therefore analysed cholinergic fast network oscillations in rat prefrontal cortex slices. We observed significant temporal correlations, which were similar in strength to those found in mouse hippocampus and human cortex. Taken together, our data indicate that fast network oscillations with temporal correlations can be induced in isolated networks in vitro in different species and brain areas, and therefore may serve as model systems to investigate how altered temporal correlations in disease may be rescued with pharmacology.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89571
|a 89571 - Connectivity and Activity (POF2-89571)
|c POF2-89571
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Carbachol: pharmacology
650 _ 2 |2 MeSH
|a Cholinergic Agonists: pharmacology
650 _ 2 |2 MeSH
|a Dose-Response Relationship, Drug
650 _ 2 |2 MeSH
|a Electrophysiology
650 _ 2 |2 MeSH
|a GABA-A Receptor Agonists: pharmacology
650 _ 2 |2 MeSH
|a Hippocampus: anatomy & histology
650 _ 2 |2 MeSH
|a Hippocampus: drug effects
650 _ 2 |2 MeSH
|a Hippocampus: physiology
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Membrane Potentials: physiology
650 _ 2 |2 MeSH
|a Mice
650 _ 2 |2 MeSH
|a Mice, Inbred DBA
650 _ 2 |2 MeSH
|a Nerve Net: anatomy & histology
650 _ 2 |2 MeSH
|a Nerve Net: drug effects
650 _ 2 |2 MeSH
|a Nerve Net: physiology
650 _ 2 |2 MeSH
|a Periodicity
650 _ 2 |2 MeSH
|a Prefrontal Cortex: anatomy & histology
650 _ 2 |2 MeSH
|a Prefrontal Cortex: drug effects
650 _ 2 |2 MeSH
|a Prefrontal Cortex: physiology
650 _ 2 |2 MeSH
|a Pyridines: pharmacology
650 _ 2 |2 MeSH
|a Rats
650 _ 2 |2 MeSH
|a Rats, Wistar
650 _ 7 |0 0
|2 NLM Chemicals
|a Cholinergic Agonists
650 _ 7 |0 0
|2 NLM Chemicals
|a GABA-A Receptor Agonists
650 _ 7 |0 0
|2 NLM Chemicals
|a Pyridines
650 _ 7 |0 51-83-2
|2 NLM Chemicals
|a Carbachol
650 _ 7 |0 82626-48-0
|2 NLM Chemicals
|a zolpidem
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a acetylcholine
653 2 0 |2 Author
|a memory
653 2 0 |2 Author
|a mouse
653 2 0 |2 Author
|a ongoing oscillations
653 2 0 |2 Author
|a temporal auto-correlations
700 1 _ |0 P:(DE-HGF)0
|a Jansen, R.
|b 1
700 1 _ |0 P:(DE-Juel1)VDB102780
|a van Aerde, K.
|b 2
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Timmerman, J.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Brussaard, A.B.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Mansvelder, H.D.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Linkenkaer-Hansen, K.
|b 6
773 _ _ |0 PERI:(DE-600)2005178-5
|a 10.1111/j.1460-9568.2011.07748.x
|g Vol. 34, p. 394 - 403
|p 394 - 403
|q 34<394 - 403
|t European journal of neuroscience
|v 34
|x 0953-816X
|y 2011
856 7 _ |u http://dx.doi.org/10.1111/j.1460-9568.2011.07748.x
909 C O |o oai:juser.fz-juelich.de:17818
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89571
|a DE-HGF
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
970 _ _ |a VDB:(DE-Juel1)132388
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21