000185884 001__ 185884
000185884 005__ 20240610121045.0
000185884 0247_ $$2doi$$a10.1116/1.4904401
000185884 0247_ $$2ISSN$$a0734-211X
000185884 0247_ $$2ISSN$$a1071-1023
000185884 0247_ $$2ISSN$$a1520-8567
000185884 0247_ $$2ISSN$$a2166-2746
000185884 0247_ $$2ISSN$$a2166-2754
000185884 0247_ $$2WOS$$aWOS:000348915500004
000185884 037__ $$aFZJ-2015-00021
000185884 082__ $$a530
000185884 1001_ $$0P:(DE-Juel1)144017$$aSchäfer, Anna$$b0$$eCorresponding Author
000185884 245__ $$aHexagonal LaLuO3 as high-κ dielectric
000185884 260__ $$aNew York, NY$$bInst.$$c2015
000185884 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1420724983_9915
000185884 3367_ $$2DataCite$$aOutput Types/Journal article
000185884 3367_ $$00$$2EndNote$$aJournal Article
000185884 3367_ $$2BibTeX$$aARTICLE
000185884 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185884 3367_ $$2DRIVER$$aarticle
000185884 520__ $$aAmong the different polymorphs of LaLuO3 the hexagonal one is the least explored. Therefore, in this work, hexagonal LaLuO3 is grown and investigated in more detail. Two different growth templates are presented, offering the possibility to stabilize this hexagonal phase: Y2O3 on Si (111) and GaN on Al2O3 (0001). The LaLuO3 layers show smooth surfaces and high crystallinity for both types of templates. Spectroscopic characterization reveals a wide bandgap Eg of 5.6 eV and capacitance voltage measurements display a relative permittivity κ of 26, which makes hexagonal LaLuO3 a promising candidate as a future gate dielectric for devices based on hexagonal semiconductors such as GaN.
000185884 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000185884 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000185884 7001_ $$0P:(DE-HGF)0$$aWendt, Fabian$$b1
000185884 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b2
000185884 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b3
000185884 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b4
000185884 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b5
000185884 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, Martina$$b6
000185884 7001_ $$0P:(DE-Juel1)133839$$aBesmehn, Astrid$$b7
000185884 7001_ $$0P:(DE-HGF)0$$aNiu, Gang$$b8
000185884 7001_ $$0P:(DE-HGF)0$$aSchroeder, Thomas$$b9
000185884 773__ $$0PERI:(DE-600)1475429-0$$a10.1116/1.4904401$$gVol. 33, no. 1, p. 01A104 -$$n1$$p01A104 $$tJournal of vacuum science & technology / B$$v33$$x2166-2754$$y2015
000185884 8564_ $$uhttp://scitation.aip.org/content/avs/journal/jvstb/33/1/10.1116/1.49044015
000185884 8564_ $$uhttps://juser.fz-juelich.de/record/185884/files/FZJ-2015-00021.pdf$$yRestricted
000185884 909CO $$ooai:juser.fz-juelich.de:185884$$pVDB
000185884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144017$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000185884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161187$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000185884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000185884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000185884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000185884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000185884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000185884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133839$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000185884 9130_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000185884 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000185884 9141_ $$y2015
000185884 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185884 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185884 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185884 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185884 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185884 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185884 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185884 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000185884 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000185884 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000185884 920__ $$lyes
000185884 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000185884 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000185884 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x2
000185884 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000185884 980__ $$ajournal
000185884 980__ $$aVDB
000185884 980__ $$aI:(DE-Juel1)PGI-9-20110106
000185884 980__ $$aI:(DE-Juel1)PGI-5-20110106
000185884 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000185884 980__ $$aI:(DE-82)080009_20140620
000185884 980__ $$aUNRESTRICTED
000185884 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000185884 981__ $$aI:(DE-Juel1)PGI-5-20110106
000185884 981__ $$aI:(DE-Juel1)ZEA-3-20090406