001     185884
005     20240610121045.0
024 7 _ |a 10.1116/1.4904401
|2 doi
024 7 _ |a 0734-211X
|2 ISSN
024 7 _ |a 1071-1023
|2 ISSN
024 7 _ |a 1520-8567
|2 ISSN
024 7 _ |a 2166-2746
|2 ISSN
024 7 _ |a 2166-2754
|2 ISSN
024 7 _ |a WOS:000348915500004
|2 WOS
037 _ _ |a FZJ-2015-00021
082 _ _ |a 530
100 1 _ |a Schäfer, Anna
|0 P:(DE-Juel1)144017
|b 0
|e Corresponding Author
245 _ _ |a Hexagonal LaLuO3 as high-κ dielectric
260 _ _ |a New York, NY
|c 2015
|b Inst.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1420724983_9915
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Among the different polymorphs of LaLuO3 the hexagonal one is the least explored. Therefore, in this work, hexagonal LaLuO3 is grown and investigated in more detail. Two different growth templates are presented, offering the possibility to stabilize this hexagonal phase: Y2O3 on Si (111) and GaN on Al2O3 (0001). The LaLuO3 layers show smooth surfaces and high crystallinity for both types of templates. Spectroscopic characterization reveals a wide bandgap Eg of 5.6 eV and capacitance voltage measurements display a relative permittivity κ of 26, which makes hexagonal LaLuO3 a promising candidate as a future gate dielectric for devices based on hexagonal semiconductors such as GaN.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Wendt, Fabian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mantl, Siegfried
|0 P:(DE-Juel1)128609
|b 2
700 1 _ |a Hardtdegen, Hilde
|0 P:(DE-Juel1)125593
|b 3
700 1 _ |a Mikulics, Martin
|0 P:(DE-Juel1)128613
|b 4
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 5
700 1 _ |a Luysberg, Martina
|0 P:(DE-Juel1)130811
|b 6
700 1 _ |a Besmehn, Astrid
|0 P:(DE-Juel1)133839
|b 7
700 1 _ |a Niu, Gang
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schroeder, Thomas
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1116/1.4904401
|g Vol. 33, no. 1, p. 01A104 -
|0 PERI:(DE-600)1475429-0
|n 1
|p 01A104
|t Journal of vacuum science & technology / B
|v 33
|y 2015
|x 2166-2754
856 4 _ |u http://scitation.aip.org/content/avs/journal/jvstb/33/1/10.1116/1.49044015
856 4 _ |u https://juser.fz-juelich.de/record/185884/files/FZJ-2015-00021.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:185884
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144017
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161187
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)125593
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128613
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128631
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130811
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)133839
913 0 _ |a DE-HGF
|b Schlüsseltechnologien
|l Grundlagen für zukünftige Informationstechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21