001 | 185884 | ||
005 | 20240610121045.0 | ||
024 | 7 | _ | |a 10.1116/1.4904401 |2 doi |
024 | 7 | _ | |a 0734-211X |2 ISSN |
024 | 7 | _ | |a 1071-1023 |2 ISSN |
024 | 7 | _ | |a 1520-8567 |2 ISSN |
024 | 7 | _ | |a 2166-2746 |2 ISSN |
024 | 7 | _ | |a 2166-2754 |2 ISSN |
024 | 7 | _ | |a WOS:000348915500004 |2 WOS |
037 | _ | _ | |a FZJ-2015-00021 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Schäfer, Anna |0 P:(DE-Juel1)144017 |b 0 |e Corresponding Author |
245 | _ | _ | |a Hexagonal LaLuO3 as high-κ dielectric |
260 | _ | _ | |a New York, NY |c 2015 |b Inst. |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1420724983_9915 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Among the different polymorphs of LaLuO3 the hexagonal one is the least explored. Therefore, in this work, hexagonal LaLuO3 is grown and investigated in more detail. Two different growth templates are presented, offering the possibility to stabilize this hexagonal phase: Y2O3 on Si (111) and GaN on Al2O3 (0001). The LaLuO3 layers show smooth surfaces and high crystallinity for both types of templates. Spectroscopic characterization reveals a wide bandgap Eg of 5.6 eV and capacitance voltage measurements display a relative permittivity κ of 26, which makes hexagonal LaLuO3 a promising candidate as a future gate dielectric for devices based on hexagonal semiconductors such as GaN. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |x 0 |f POF III |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Wendt, Fabian |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Mantl, Siegfried |0 P:(DE-Juel1)128609 |b 2 |
700 | 1 | _ | |a Hardtdegen, Hilde |0 P:(DE-Juel1)125593 |b 3 |
700 | 1 | _ | |a Mikulics, Martin |0 P:(DE-Juel1)128613 |b 4 |
700 | 1 | _ | |a Schubert, Jürgen |0 P:(DE-Juel1)128631 |b 5 |
700 | 1 | _ | |a Luysberg, Martina |0 P:(DE-Juel1)130811 |b 6 |
700 | 1 | _ | |a Besmehn, Astrid |0 P:(DE-Juel1)133839 |b 7 |
700 | 1 | _ | |a Niu, Gang |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Schroeder, Thomas |0 P:(DE-HGF)0 |b 9 |
773 | _ | _ | |a 10.1116/1.4904401 |g Vol. 33, no. 1, p. 01A104 - |0 PERI:(DE-600)1475429-0 |n 1 |p 01A104 |t Journal of vacuum science & technology / B |v 33 |y 2015 |x 2166-2754 |
856 | 4 | _ | |u http://scitation.aip.org/content/avs/journal/jvstb/33/1/10.1116/1.49044015 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/185884/files/FZJ-2015-00021.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:185884 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)144017 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)161187 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)128609 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)125593 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128613 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128631 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130811 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)133839 |
913 | 0 | _ | |a DE-HGF |b Schlüsseltechnologien |l Grundlagen für zukünftige Informationstechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-421 |2 G:(DE-HGF)POF2-400 |v Frontiers of charge based Electronics |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)ZEA-3-20090406 |k ZEA-3 |l Analytik |x 2 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
980 | _ | _ | |a I:(DE-Juel1)ZEA-3-20090406 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
981 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
981 | _ | _ | |a I:(DE-Juel1)ZEA-3-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|