Journal Article FZJ-2015-00091

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Nanoparticle surface-enhanced Raman scattering of bacteriorhodopsin stabilized by amphipol A8-35

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2014
Springer New York, NY

The journal of membrane biology 247(9-10), 971 - 980 () [10.1007/s00232-014-9701-9]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Surface-enhanced Raman spectroscopy (SERS) has developed dramatically since its discovery in the 1970s, because of its power as an analytical tool for selective sensing of molecules adsorbed onto noble metal nanoparticles (NPs) and nanostructures, including at the single-molecule (SM) level. Despite the high importance of membrane proteins (MPs), SERS application to MPs has not really been studied, due to the great handling difficulties resulting from the amphiphilic nature of MPs. The ability of amphipols (APols) to trap MPs and keep them soluble, stable, and functional opens up onto highly interesting applications for SERS studies, possibly at the SM level. This seems to be feasible since single APol-trapped MPs can fit into gaps between noble metal NPs, or in other gap-containing SERS substrates, whereby the enhancement of Raman scattering signal may be sufficient for SM sensitivity. The goal of the present study is to give a proof of concept of SERS with APol-stabilized MPs, using bacteriorhodopsin (BR) as a model. BR trapped by APol A8-35 remains functional even after partial drying at a low humidity. A dried mixture of silver Lee-Meisel colloid NPs and BR/A8-35 complexes give rise to SERS with an average enhancement factor in excess of 10(2). SERS spectra resemble non-SERS spectra of a dried sample of BR/APol complexes.

Classification:

Contributing Institute(s):
  1. Strukturbiochemie (ICS-6)
Research Program(s):
  1. 452 - Structural Biology (POF2-452) (POF2-452)

Appears in the scientific report 2014
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-7
Workflow collections > Public records
ICS > ICS-6
Publications database

 Record created 2015-01-07, last modified 2021-01-29


Restricted:
Download fulltext PDF
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)