000185982 001__ 185982
000185982 005__ 20210129214757.0
000185982 0247_ $$2doi$$a10.1007/s00232-014-9701-9
000185982 0247_ $$2pmid$$apmid:25192978
000185982 0247_ $$2ISSN$$a0022-2631
000185982 0247_ $$2ISSN$$a1432-1424
000185982 0247_ $$2WOS$$aWOS:000343835500017
000185982 037__ $$aFZJ-2015-00091
000185982 041__ $$aeng
000185982 082__ $$a570
000185982 1001_ $$0P:(DE-HGF)0$$aPolovinkin, V.$$b0
000185982 245__ $$aNanoparticle surface-enhanced Raman scattering of bacteriorhodopsin stabilized by amphipol A8-35
000185982 260__ $$aNew York, NY$$bSpringer$$c2014
000185982 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1420632942_23887
000185982 3367_ $$2DataCite$$aOutput Types/Journal article
000185982 3367_ $$00$$2EndNote$$aJournal Article
000185982 3367_ $$2BibTeX$$aARTICLE
000185982 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185982 3367_ $$2DRIVER$$aarticle
000185982 520__ $$aSurface-enhanced Raman spectroscopy (SERS) has developed dramatically since its discovery in the 1970s, because of its power as an analytical tool for selective sensing of molecules adsorbed onto noble metal nanoparticles (NPs) and nanostructures, including at the single-molecule (SM) level. Despite the high importance of membrane proteins (MPs), SERS application to MPs has not really been studied, due to the great handling difficulties resulting from the amphiphilic nature of MPs. The ability of amphipols (APols) to trap MPs and keep them soluble, stable, and functional opens up onto highly interesting applications for SERS studies, possibly at the SM level. This seems to be feasible since single APol-trapped MPs can fit into gaps between noble metal NPs, or in other gap-containing SERS substrates, whereby the enhancement of Raman scattering signal may be sufficient for SM sensitivity. The goal of the present study is to give a proof of concept of SERS with APol-stabilized MPs, using bacteriorhodopsin (BR) as a model. BR trapped by APol A8-35 remains functional even after partial drying at a low humidity. A dried mixture of silver Lee-Meisel colloid NPs and BR/A8-35 complexes give rise to SERS with an average enhancement factor in excess of 10(2). SERS spectra resemble non-SERS spectra of a dried sample of BR/APol complexes.
000185982 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000185982 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de, PubMed,
000185982 7001_ $$0P:(DE-Juel1)131949$$aBalandin, T.$$b1$$ufzj
000185982 7001_ $$0P:(DE-HGF)0$$aVolkov, O.$$b2
000185982 7001_ $$0P:(DE-HGF)0$$aRound, E.$$b3
000185982 7001_ $$0P:(DE-Juel1)144613$$aBorshchevskiy, V.$$b4
000185982 7001_ $$0P:(DE-HGF)0$$aUtrobin, P.$$b5
000185982 7001_ $$0P:(DE-HGF)0$$avon Stetten, D.$$b6
000185982 7001_ $$0P:(DE-HGF)0$$aRoyant, A.$$b7
000185982 7001_ $$0P:(DE-Juel1)132029$$aWillbold, D.$$b8$$ufzj
000185982 7001_ $$0P:(DE-HGF)0$$aArzumanyan, G.$$b9
000185982 7001_ $$0P:(DE-HGF)0$$aChupin, V.$$b10
000185982 7001_ $$0P:(DE-HGF)0$$aPopot, J-L$$b11
000185982 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, V.$$b12$$eCorresponding Author$$ufzj
000185982 773__ $$0PERI:(DE-600)1459323-3$$a10.1007/s00232-014-9701-9$$gVol. 247, no. 9-10, p. 971 - 980$$n9-10$$p971 - 980$$tThe @journal of membrane biology$$v247$$x1432-1424$$y2014
000185982 8564_ $$uhttp://www.ncbi.nlm.nih.gov/pubmed/25192978
000185982 8564_ $$uhttps://juser.fz-juelich.de/record/185982/files/FZJ-2015-00091.pdf$$yRestricted
000185982 909CO $$ooai:juser.fz-juelich.de:185982$$pVDB
000185982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131949$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000185982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000185982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000185982 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000185982 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000185982 9141_ $$y2014
000185982 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185982 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185982 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185982 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185982 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185982 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185982 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185982 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000185982 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000185982 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000185982 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000185982 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000185982 920__ $$lyes
000185982 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000185982 980__ $$ajournal
000185982 980__ $$aVDB
000185982 980__ $$aI:(DE-Juel1)ICS-6-20110106
000185982 980__ $$aUNRESTRICTED
000185982 981__ $$aI:(DE-Juel1)IBI-7-20200312