001     185982
005     20210129214757.0
024 7 _ |a 10.1007/s00232-014-9701-9
|2 doi
024 7 _ |a pmid:25192978
|2 pmid
024 7 _ |a 0022-2631
|2 ISSN
024 7 _ |a 1432-1424
|2 ISSN
024 7 _ |a WOS:000343835500017
|2 WOS
037 _ _ |a FZJ-2015-00091
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Polovinkin, V.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nanoparticle surface-enhanced Raman scattering of bacteriorhodopsin stabilized by amphipol A8-35
260 _ _ |a New York, NY
|c 2014
|b Springer
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1420632942_23887
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Surface-enhanced Raman spectroscopy (SERS) has developed dramatically since its discovery in the 1970s, because of its power as an analytical tool for selective sensing of molecules adsorbed onto noble metal nanoparticles (NPs) and nanostructures, including at the single-molecule (SM) level. Despite the high importance of membrane proteins (MPs), SERS application to MPs has not really been studied, due to the great handling difficulties resulting from the amphiphilic nature of MPs. The ability of amphipols (APols) to trap MPs and keep them soluble, stable, and functional opens up onto highly interesting applications for SERS studies, possibly at the SM level. This seems to be feasible since single APol-trapped MPs can fit into gaps between noble metal NPs, or in other gap-containing SERS substrates, whereby the enhancement of Raman scattering signal may be sufficient for SM sensitivity. The goal of the present study is to give a proof of concept of SERS with APol-stabilized MPs, using bacteriorhodopsin (BR) as a model. BR trapped by APol A8-35 remains functional even after partial drying at a low humidity. A dried mixture of silver Lee-Meisel colloid NPs and BR/A8-35 complexes give rise to SERS with an average enhancement factor in excess of 10(2). SERS spectra resemble non-SERS spectra of a dried sample of BR/APol complexes.
536 _ _ |a 452 - Structural Biology (POF2-452)
|0 G:(DE-HGF)POF2-452
|c POF2-452
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de, PubMed,
700 1 _ |a Balandin, T.
|0 P:(DE-Juel1)131949
|b 1
|u fzj
700 1 _ |a Volkov, O.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Round, E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Borshchevskiy, V.
|0 P:(DE-Juel1)144613
|b 4
700 1 _ |a Utrobin, P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a von Stetten, D.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Royant, A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Willbold, D.
|0 P:(DE-Juel1)132029
|b 8
|u fzj
700 1 _ |a Arzumanyan, G.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Chupin, V.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Popot, J-L
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Gordeliy, V.
|0 P:(DE-Juel1)131964
|b 12
|e Corresponding Author
|u fzj
773 _ _ |a 10.1007/s00232-014-9701-9
|g Vol. 247, no. 9-10, p. 971 - 980
|0 PERI:(DE-600)1459323-3
|n 9-10
|p 971 - 980
|t The @journal of membrane biology
|v 247
|y 2014
|x 1432-1424
856 4 _ |u http://www.ncbi.nlm.nih.gov/pubmed/25192978
856 4 _ |u https://juser.fz-juelich.de/record/185982/files/FZJ-2015-00091.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:185982
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131949
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131964
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-450
|0 G:(DE-HGF)POF2-452
|2 G:(DE-HGF)POF2-400
|v Structural Biology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21