001     186082
005     20250314084111.0
024 7 _ |2 doi
|a 10.1109/PDP.2014.112
024 7 _ |a WOS:000353964700080
|2 WOS
037 _ _ |a FZJ-2015-00183
100 1 _ |0 P:(DE-Juel1)157897
|a Gschwandtner, Philipp
|b 0
|e Corresponding Author
111 2 _ |a 2014 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)
|g PDP 2014
|c Torino
|d 2014-02-12 - 2014-02-14
|w Italy
245 _ _ |a Modeling CPU Energy Consumption of HPC Applications on the IBM POWER7
260 _ _ |b IEEE
|c 2014
300 _ _ |a 536 - 543
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1421057011_25614
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Energy consumption optimization of HPC applications inherently requires measurements for reference and comparison. However, most of today’s systems lack the necessary hardware support for power or energy measurements. Furthermore, in-band data availability is preferred for specific optimization techniques such as auto-tuning. For this reason, we present in-band energy consumption models for the IBM POWER7 processor based on hardware counters. We demonstrate that linear regression is a suitable means for modeling energy consumption, and we rely on already available, highlevelbenchmarks for training instead of self-written or handtuned micro-kernels. We compare modeling efforts for different instruction mixes caused by two compilers (GCC and IBM XL) as well as various multi-threading usage scenarios, and validate across our training benchmarks and two real-world applications. Results show mean errors of approximately 1% and overall max errors of 5.3% for GCC.
536 _ _ |0 G:(DE-HGF)POF2-411
|a 411 - Computational Science and Mathematical Methods (POF2-411)
|c POF2-411
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |0 P:(DE-Juel1)132163
|a Knobloch, Michael
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)132199
|a Mohr, Bernd
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)144441
|a Pleiter, Dirk
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Fahringer, Thomas
|b 4
773 _ _ |a 10.1109/PDP.2014.112
909 C O |o oai:juser.fz-juelich.de:186082
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132163
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132199
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144441
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21