000186425 001__ 186425 000186425 005__ 20240619092039.0 000186425 0247_ $$2doi$$a10.3762/bjnano.6.13 000186425 0247_ $$2WOS$$aWOS:000348939500002 000186425 0247_ $$2Handle$$a2128/10758 000186425 037__ $$aFZJ-2015-00501 000186425 082__ $$a620 000186425 1001_ $$0P:(DE-HGF)0$$aSiglreitmeier, Maria$$b0 000186425 245__ $$aMultifunctional layered magnetic composites 000186425 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2015 000186425 3367_ $$2DRIVER$$aarticle 000186425 3367_ $$2DataCite$$aOutput Types/Journal article 000186425 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1421918440_12684 000186425 3367_ $$2BibTeX$$aARTICLE 000186425 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000186425 3367_ $$00$$2EndNote$$aJournal Article 000186425 520__ $$aA fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs) are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS) showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material. 000186425 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0 000186425 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1 000186425 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x2 000186425 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000186425 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0 000186425 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x1 000186425 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x2 000186425 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x3 000186425 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x2 000186425 65017 $$0V:(DE-MLZ)GC-120-1$$2V:(DE-HGF)$$aInformation and Communication$$x1 000186425 65017 $$0V:(DE-MLZ)GC-140$$2V:(DE-HGF)$$aSoft Matter, Macromolecules, Complex fluids, Biophysics$$x0 000186425 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0 000186425 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x1 000186425 7001_ $$0P:(DE-Juel1)151161$$aWu, Baohu$$b1$$ufzj 000186425 7001_ $$0P:(DE-HGF)0$$aKollmann, Tina$$b2 000186425 7001_ $$0P:(DE-HGF)0$$aNeubauer, Martin$$b3 000186425 7001_ $$0P:(DE-HGF)0$$aNagy, Gergely$$b4 000186425 7001_ $$0P:(DE-Juel1)130962$$aSchwahn, Dietmar$$b5$$ufzj 000186425 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b6$$ufzj 000186425 7001_ $$0P:(DE-HGF)0$$aFaivre, Damien$$b7 000186425 7001_ $$0P:(DE-HGF)0$$aZahn, Dirk$$b8 000186425 7001_ $$0P:(DE-HGF)0$$aFery, Andreas$$b9 000186425 7001_ $$0P:(DE-HGF)0$$aCölfen, Helmut$$b10$$eCorresponding Author 000186425 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.6.13$$gVol. 6, p. 134 - 148$$p134 - 148$$tBeilstein journal of nanotechnology$$v6$$x2190-4286$$y2015 000186425 8564_ $$uhttps://juser.fz-juelich.de/record/186425/files/FZJ-2015-00501.pdf$$yOpenAccess 000186425 909CO $$ooai:juser.fz-juelich.de:186425$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$pVDB:MLZ$$popenaire 000186425 915__ $$0LIC:(DE-HGF)CCBY2$$2HGFVOC$$aCreative Commons Attribution CC BY 2.0 000186425 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000186425 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000186425 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000186425 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000186425 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000186425 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000186425 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000186425 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000186425 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000186425 9141_ $$y2015 000186425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151161$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000186425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130962$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000186425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000186425 9130_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$vSoft Matter Composites$$x0 000186425 9130_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vJCNS$$x1 000186425 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0 000186425 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1 000186425 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x2 000186425 920__ $$lyes 000186425 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0 000186425 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung$$x1 000186425 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung$$x2 000186425 9801_ $$aUNRESTRICTED 000186425 9801_ $$aFullTexts 000186425 980__ $$ajournal 000186425 980__ $$aVDB 000186425 980__ $$aUNRESTRICTED 000186425 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000186425 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000186425 980__ $$aI:(DE-Juel1)ICS-1-20110106 000186425 981__ $$aI:(DE-Juel1)IBI-8-20200312 000186425 981__ $$aI:(DE-Juel1)JCNS-1-20110106 000186425 981__ $$aI:(DE-Juel1)JCNS-1-20110106 000186425 981__ $$aI:(DE-Juel1)ICS-1-20110106