001     18702
005     20240610120735.0
024 7 _ |2 DOI
|a 10.1080/14786435.2010.512578
024 7 _ |2 WOS
|a WOS:000290670100041
037 _ _ |a PreJuSER-18702
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Mechanics
084 _ _ |2 WoS
|a Metallurgy & Metallurgical Engineering
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Wencka, M.
|b 0
245 _ _ |a Electrical resistivity of the u-Al4Mn giant-unit-cell complex metallic alloy
260 _ _ |a London [u.a.]
|b Taylor and Francis
|c 2011
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 11501
|a Philosophical Magazine
|v 91
|x 0141-8610
|y 19
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a This work was performed within the 6th Framework EU Network of Excellence "Complex Metallic Alloys" (Contract No. NMP3-CT-2005-500140). J.D. acknowledges support from the Centre of Excellence EN -> FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia.
520 _ _ |a The mu-Al4Mn complex intermetallic phase with 563 atoms in its giant unit cell exhibits a complicated temperature dependence of electrical resistivity that has a broad maximum at about 175 K and a minimum at 13 K. The temperature dependence of the resistivity was reproduced by employing the theory of quantum transport of slow charge carriers, which predicts a crossover from the metallic (Boltzmann-type) positive-temperature-coefficient electrical resistivity at low temperatures to the insulator-like (non-Boltzmann) negative-temperature-coefficient resistivity at elevated temperatures. The low-temperature resistivity minimum was reproduced by considering it as a magnetic effect due to increased scattering of the conduction electrons by the Mn spins on approaching the spin glass phase that develops below the spin freezing temperature T-f = 2.7 K.
536 _ _ |0 G:(DE-Juel1)FUEK414
|2 G:(DE-HGF)
|a Kondensierte Materie
|c P54
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a complex metallic alloy
653 2 0 |2 Author
|a electrical resistivity
653 2 0 |2 Author
|a Al-Mn system
653 2 0 |2 Author
|a magnetic susceptibility
653 2 0 |2 Author
|a spin glass
700 1 _ |0 P:(DE-HGF)0
|a Jazbec, S.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Jagli, Z.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Vrtnik, M.
|b 3
700 1 _ |0 P:(DE-Juel1)130637
|a Feuerbacher, M.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB5029
|a Heggen, M.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB71676
|a Roitsch, S.
|b 6
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Dolinsek, J.
|b 7
773 _ _ |0 PERI:(DE-600)2001649-9
|a 10.1080/14786435.2010.512578
|g Vol. 91
|q 91
|t Philosophical magazine / A
|v 91
|x 0141-8610
|y 2011
856 7 _ |u http://dx.doi.org/10.1080/14786435.2010.512578
909 C O |o oai:juser.fz-juelich.de:18702
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK414
|a DE-HGF
|b Materie
|k P54
|l Kondensierte Materie
|v Kondensierte Materie
|x 0
|z entfällt bis 2009
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|g PGI
|k PGI-5
|l Mikrostrukturforschung
|x 0
970 _ _ |a VDB:(DE-Juel1)133391
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21