Journal Article FZJ-2015-01036

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements

 ;  ;  ;  ;  ;

2015
Elsevier Science Amsterdam [u.a.]

European journal of agronomy 64, 8 - 20 () [10.1016/j.eja.2014.12.004]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Spatial heterogeneity of crop growth within fields is rarely quantified but essential for estimating yield and optimizing crop management. Relationships in fields between crop growth and soil physical characteristics have been described before but an unrealistically high number of invasive measurements have to be made to obtain spatially continuous soil information. Alternatively, non-invasive methods are available for characterizing soil heterogeneity but relationships to growth characteristics have rarely been investigated. Here, we use an electromagnetic induction (EMI) sensor to measure the apparent electromagnetic conductivity of the soil (ECa), which can be used as a proxy for the relative spatial variability of the prevailing soil properties. We evaluate relationships between ECa and soil and crop characteristics assuming that measured ECa patterns relate to observed growth patterns in the field. The test fields were located in Western Germany where different crops (winter wheat, winter barley, and sugar beet) were grown between 2011 and 2013. Measurements include soil texture, soil moisture and crop growth characteristics taken frequently throughout the vegetation periods for plant height, leaf area index (LAI), dry matter of plants and selected organs (green leaves and storage organs). Spatial variability was observed for soil and crop characteristics that differed among fields, crops and years. Good correlations between ECa and soil texture and soil moisture confirmed that ECa measurements are suitable for characterizing spatial differences in soil properties for our test sites. Averaged over all sampling dates of a vegetation period the differences in the spatial variability of crop characteristics were small between the years and crops considered. However, the within-field crop growth heterogeneity changed throughout the growing period depending on the crop development stage. Correlations were found between ECa and the crop characteristics that varied with time and were most pronounced in the main growth phase when LAI approached its maximum. Crop height correlated better with ECa than yield, LAI, and dry matter but differences were observed between fields, years and crops. Our results suggest that in dry years soil patterns have a stronger influence on the crop growth patterns than in wetter years when water limitation is less severe. We conclude that ECa measurements are suitable for detecting spatial patterns in soil characteristics that influence the spatial crop growth patterns for the region, years and crops considered. However, relationships between patterns in crop growth and soil characteristics within fields are more complex and require further investigation.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2015
Database coverage:
BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database

 Record created 2015-01-28, last modified 2020-07-02


Restricted:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)