Home > Publications database > Ultrafiltration of permeable hard-sphere suspensions |
Poster (After Call) | FZJ-2015-01347 |
; ;
2014
Abstract: Membrane ultrafiltration is a pressure driven process useful for the separation of brownian par- ticles, like small colloids or nanoparticles, from a solvent or smaller solutes. This process is of high importance for the concentration of protein or small microgel suspensions. In these systems, concentration polarization determines the permeate flux (Figure 1). Concentration polarization is the build-up of solute at the membrane surface due to convective-diffusive trans- port of solute in the boundary layer. The efficiency of the separation process is thus strongly dependent on the hydrodynamic conditions, membrane porosity and colloidal interactions.We present a macroscopic model for cross-flow ultrafiltration, where the suspension is flowing tangentially over the membrane surface. We study filtration of suspensions of neutral permeable particles [1]. The influence of the nature of the particles is reflected through the transport prop- erties of the suspension, such as the concentration-dependent collective diffusion coefficient and the effective suspension viscosity [2,3]. We analyze the efficiency of the filtration process by studying the concentration polarization layer and the permeate flux at different operating conditions (applied transmembrane pressure and shear rate).References[1] R. Roa, E. K. Zholkovskiy and G. Nägele, to be submitted.[2] G. C. Abade, B. Cichocki, M. L. Ekiel-Jez ̇ewska, G. Nägele and E. Wajnryb, J. Chem.Phys. 136, 104902, (2012).[3] E. K. Zholkovskiy, V. N. Shilov, J. H. Masliyah, and M. P. Bondarenko, Can. J. Chem. Eng. 85, 701, (2007).
![]() |
The record appears in these collections: |