| Home > Publications database > Sensing with nanopores â the influence of asymmetric blocking on electrochemical redox cycling current > print |
| 001 | 187933 | ||
| 005 | 20210129215111.0 | ||
| 024 | 7 | _ | |2 doi |a 10.1039/C4AN01401D |
| 024 | 7 | _ | |2 ISSN |a 0003-2654 |
| 024 | 7 | _ | |2 ISSN |a 1364-5528 |
| 024 | 7 | _ | |2 Handle |a 2128/8399 |
| 024 | 7 | _ | |2 WOS |a WOS:000343003700025 |
| 037 | _ | _ | |a FZJ-2015-01443 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |0 P:(DE-HGF)0 |a Krause, Kay J. |b 0 |e Corresponding Author |
| 245 | _ | _ | |a Sensing with nanopores â the influence of asymmetric blocking on electrochemical redox cycling current |
| 260 | _ | _ | |a Cambridge |b Soc. |c 2014 |
| 336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1423836840_23993 |
| 336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
| 336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
| 336 | 7 | _ | |2 BibTeX |a ARTICLE |
| 336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
| 336 | 7 | _ | |2 DRIVER |a article |
| 520 | _ | _ | |a Nanoporous redox cycling devices are highly efficient tools for the electrochemical sensing of redox-active molecules. By using a redox-active mediator, this concept can be exploited for the detection of molecular binding events via blocking of the redox cycling current within the nanopores. Here, we investigate the influence of different blocking scenarios inside a nanopore on the resulting redox cycling current. Our analysis is based on random walk simulations and finite element calculations. We distinguish between symmetric and asymmetric pore blocking and show that the current decrease is more pronounced in the case of asymmetric blocking reflecting the diffusion-driven pathway of the redox-active molecules. Using random walk simulations, we further study the impact of pore blocking in the frequency domain and identify relevant features of the power spectral density, which are of particular interest for sensing applications based on fluctuation analysis. |
| 536 | _ | _ | |0 G:(DE-HGF)POF2-423 |a 423 - Sensorics and bioinspired systems (POF2-423) |c POF2-423 |f POF II |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
| 700 | 1 | _ | |0 P:(DE-Juel1)128700 |a Kätelhön, Enno |b 1 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Lemay, Serge G. |b 2 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Compton, Richard G. |b 3 |
| 700 | 1 | _ | |0 P:(DE-Juel1)128745 |a Wolfrum, Bernhard |b 4 |u fzj |
| 773 | _ | _ | |0 PERI:(DE-600)1472713-4 |a 10.1039/C4AN01401D |g Vol. 139, no. 21, p. 5499 - 5503 |n 21 |p 5499 - 5503 |t The @analyst |v 139 |x 1364-5528 |y 2014 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/187933/files/FZJ-2015-01443.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/187933/files/FZJ-2015-01443.jpg?subformat=icon-144 |x icon-144 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/187933/files/FZJ-2015-01443.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/187933/files/FZJ-2015-01443.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:187933 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-HGF)0 |a Forschungszentrum Jülich GmbH |b 0 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a PGI-8 |b 0 |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)128745 |a Forschungszentrum Jülich GmbH |b 4 |k FZJ |
| 913 | 2 | _ | |0 G:(DE-HGF)POF3-523 |1 G:(DE-HGF)POF3-520 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |v Controlling Configuration-Based Phenomena |x 0 |
| 913 | 1 | _ | |0 G:(DE-HGF)POF2-423 |1 G:(DE-HGF)POF2-420 |2 G:(DE-HGF)POF2-400 |a DE-HGF |b Schlüsseltechnologien |v Sensorics and bioinspired systems |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
| 914 | 1 | _ | |y 2014 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
| 915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
| 915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
| 915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
| 915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
| 915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
| 915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
| 915 | _ | _ | |0 StatID:(DE-HGF)0400 |2 StatID |a Allianz-Lizenz / DFG |
| 915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
| 915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
| 915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |
| 915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-8-20110106 |k PGI-8 |l Bioelektronik |x 0 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a FullTexts |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-8-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|