001     189510
005     20210129215403.0
024 7 _ |a 10.1007/s11051-014-2805-4
|2 doi
024 7 _ |a 1388-0764
|2 ISSN
024 7 _ |a 1572-896X
|2 ISSN
024 7 _ |a WOS:000346697000064
|2 WOS
037 _ _ |a FZJ-2015-02664
082 _ _ |a 570
100 1 _ |a Šimek, Petr
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Synthesis of InN nanoparticles by rapid thermal ammonolysis
260 _ _ |a Dordrecht [u.a.]
|c 2014
|b Springer Science + Business Media B.V
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1429536990_28968
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a AIII group nitrides have attracted a great deal of attention in the last decades due to their applications in modern microelectronic and optoelectronic devices. In this paper, simple and controllable methods for a synthesis of InN nanoparticles in the form of nanodisks and skeletal nanostructures are presented. Careful control of the experimental conditions is necessary, as the thermal stability of InN at elevated temperatures is low. The morphology of nanoparticles was investigated by scanning electron microscopy and transmission electron microscopy combined with selected area diffraction. Profile analysis of powder X-ray diffraction data shows that the apparent size of the crystals along [001] direction decreases from the size larger than 100 nm for the low temperature syntheses to about 65 nm for the high temperature ones. Structural properties were investigated using X-ray diffraction, Raman, and photoluminescence spectroscopy. Thermal stability was probed by differential scanning calorimetry coupled with thermogravimetry in Ar and air atmospheres. Chemical composition and purity of InN are strongly dependent on temperature and duration of the synthesis.
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Sedmidubský, David
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Klímová, Kateřina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Huber, Štěpán
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brázda, Petr
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mikulics, Martin
|0 P:(DE-Juel1)128613
|b 5
|u fzj
700 1 _ |a Jankovský, Ondřej
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Sofer, Zdeněk
|0 P:(DE-HGF)0
|b 7
|e Corresponding Author
773 _ _ |a 10.1007/s11051-014-2805-4
|g Vol. 16, no. 12, p. 2805
|0 PERI:(DE-600)2017013-0
|n 12
|p 2805
|t Journal of nanoparticle research
|v 16
|y 2014
|x 1572-896X
856 4 _ |u http://link.springer.com/article/10.1007%2Fs11051-014-2805-4
856 4 _ |u https://juser.fz-juelich.de/record/189510/files/art_10.1007_s11051-014-2805-4.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189510/files/art_10.1007_s11051-014-2805-4.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189510/files/art_10.1007_s11051-014-2805-4.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189510/files/art_10.1007_s11051-014-2805-4.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189510/files/art_10.1007_s11051-014-2805-4.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189510/files/art_10.1007_s11051-014-2805-4.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:189510
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128613
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21